Advertisement

Journal of Sol-Gel Science and Technology

, Volume 61, Issue 3, pp 477–483 | Cite as

Preparation and characterization of nanorods Sb doped CdO films by sol–gel technique

  • Z. Serbetçi
  • R. K. Gupta
  • F. Yakuphanoglu
Original paper

Abstract

Pure and antimony (Sb) doped CdO films were grown using sol–gel spin coating technique. The structural properties of the films were investigated using atomic force microscopy. The structure of CdO film is converted from microrods to nanorods with Sb dopant. The analysis of optical absorption revealed that optical bandgap of the films changes with doping. The optical bandgap for 0.1, 0.5, 1.0, and 2.0% Sb doped CdO was determined to be 2.28, 2.30, 2.56, and 2.42 eV, respectively. Other optical constants such as refractive index, extinction coefficient, and dielectric constants were calculated using the optical data. The refractive index dispersion of the films obeys the single oscillator model. The volume and surface energy loss functions were calculated and observed to increase with increase in the photon energy.

Keywords

CdO Antimony Sol–gel Bandgap Optical constant 

References

  1. 1.
    Gupta RK, Ghosh K, Patel R, Mishra SR, Kahol PK (2008) Mater Lett 62:3373CrossRefGoogle Scholar
  2. 2.
    Ramakrishna Reddy KT, Shanthini GM, Johnston D, Miles RW (2003) Thin Solid Films 427:397CrossRefGoogle Scholar
  3. 3.
    Su LM, Grote N, Schmitt F (1984) Electron Lett 20:716CrossRefGoogle Scholar
  4. 4.
    Champness CH, Xu Z (1998) Appl Surf Sci 123–124:485CrossRefGoogle Scholar
  5. 5.
    Ismail RA, Abdulrazaq OA (2007) Solar Energy Mater Solar Cells 91:903CrossRefGoogle Scholar
  6. 6.
    Deokate RJ, Pawar SM, Moholkar AV, Sawant VS, Pawar CA, Bhosale CH, Rajpure KY (2008) Appl Surf Sci 254:2187CrossRefGoogle Scholar
  7. 7.
    Cruz JS, Delgado GT, Perez RC, Romero CIZ, Angel OZ (2007) Thin Solid Films 515:5381CrossRefGoogle Scholar
  8. 8.
    Vigil O, Cruz F, Morales-Acevedo A, Contreras-puente G, Vaillant L, Santana G (2001) Mater Chem Phys 68:249CrossRefGoogle Scholar
  9. 9.
    Chu TL, Chu SS (1963) J Electrochem Soc 110:548CrossRefGoogle Scholar
  10. 10.
    Subramanyam TK, Uthanna S, Naidu BS (1998) Mater Lett 35:214CrossRefGoogle Scholar
  11. 11.
    Gutierrez LRL, Romero JJC, Tapia JMP, Calva EB, Flores JCM, Lopez MO (2006) Mater Lett 60:3866CrossRefGoogle Scholar
  12. 12.
    Zhao Z, Morel DL, Ferekides CS (2002) Thin Solid Films 413:203CrossRefGoogle Scholar
  13. 13.
    Gupta RK, Ghosh K, Patel R, Mishra SR, Kahol PK (2008) Mater Lett 62:4103CrossRefGoogle Scholar
  14. 14.
    Zhao Z, Morel DL, Ferekides CS (2002) Thin Solid Films 413:203CrossRefGoogle Scholar
  15. 15.
    Saha B, Thapa R, Chattopadhyay KK (2008) Solid State Commun 145:33CrossRefGoogle Scholar
  16. 16.
    Maity R, Chattopadhyay KK (2006) Sol Enrgy Mater Sol Cells 90:597CrossRefGoogle Scholar
  17. 17.
    Deokate RJ, Pawar SM, Moholkar AV, Sawant VS, Pawar CA, Bhosale CH, Rajpure KY (2008) Appl Surf Sci 254:2187CrossRefGoogle Scholar
  18. 18.
    Gupta RK, Yakuphanoglu F, Amanullah FM (2011) Phys E 43:1666CrossRefGoogle Scholar
  19. 19.
    Gupta RK, Ghosh K, Mishra SR, Kahol PK (2008) Thin Solid Films 516:3204CrossRefGoogle Scholar
  20. 20.
    Cullity BD (1978) Elements of x-ray diffractions. Addison-Wesley, Reading, p 102Google Scholar
  21. 21.
    Manifacier JC, De Murcia M, Fillard JP, Vicario E (1977) Thin Solid Films 41:127CrossRefGoogle Scholar
  22. 22.
    Shinde VR, Gujar TP, Lokhande CD, Mane RS, Han SH (2006) Mater Chem Phys 96:326CrossRefGoogle Scholar
  23. 23.
    Cruz JS, Delgado GT, Perez RC, Romero CIZ, Angel OZ (2007) Thin Solid Films 515:5381CrossRefGoogle Scholar
  24. 24.
    Reddy KTR, Shanthini GM, Johnston D, Miles RW (2003) Thin Solid Films 427:397CrossRefGoogle Scholar
  25. 25.
    Ueda N, Maeda H, Hosono H, Kawazoe H (1998) Appl Phys Lett 84:6174Google Scholar
  26. 26.
    Inamdar AI, Sonavane AC, Sharma SK, Im H, Patil PS (2010) J Alloys Compd 495:76CrossRefGoogle Scholar
  27. 27.
    Green M, Hussain Z (1991) J Appl Phys 69:7788CrossRefGoogle Scholar
  28. 28.
    Satoh N, Nakashima T, Kamikura K, Yamamoto K (2008) Nat Nanotechnol 3:106CrossRefGoogle Scholar
  29. 29.
    Cody GD (1992) J Non Cryst Solids 141:3CrossRefGoogle Scholar
  30. 30.
    Urbach F (1953) Phys Rev 92:1324CrossRefGoogle Scholar
  31. 31.
    Ilican S, Caglar M, Cagar Y, Yakuphanoglu F (2009) Optoelectron Adv Mater Rapid Commun 3:135Google Scholar
  32. 32.
    DiDomenico M, Wemple SH (1969) J Appl Phys 40:720CrossRefGoogle Scholar
  33. 33.
    Moss TS, Burrell GJ, Ellis B (1973) Semiconductor opto-electronics. Wiley, New YorkGoogle Scholar
  34. 34.
    Sakr GB, Yahia IS, Fadel M, Fouad SS, Romèeviæ N (2010) J Alloys Compd 507:557CrossRefGoogle Scholar
  35. 35.
    Salem AM, Dahy TM, El-Gendy YA (2008) Phys B 403:3027CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryBingöl UniversityBingölTurkey
  2. 2.Engineering Research CenterNorth Carolina A&T State UniversityGreensboroUSA
  3. 3.Department of Physics, Faculty of ScienceFirat UniversityElazigTurkey
  4. 4.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations