Advertisement

Enhancement of fluorescence and lasing properties of covalent bridged fluorescent dye in organic–inorganic hybrid materials

  • Seung-Yeon Kwak
  • Na Ree Kim
  • Kangin Lee
  • Jonghoon Yi
  • Jae Hong Kim
  • Byeong-Soo Bae
Original paper

Abstract

Fluorescent dye (DCM-OH) is covalently bridged to organic–inorganic hybrid material to prevent molecular stacking and to get high fluorescence efficiency and laser property. Novel DCM-OH is synthesized to have hydroxyl functional groups and is bridged to trialkoxysilane as a sol–gel precursor. It participates in sol–gel process to synthesize dye-bridged organic–inorganic hybrid material (dye-bridged hybrimer) and solid-state dye laser sample is ready through polymerization. Fluorescence property of dye-bridged hybrimer is compared with DCM-doped hybrimer that is simple mixture of DCM-OH and hybrimer matrix. The covalently bridged structure of hybrimer with DCM-OH prevented the stacking of fluorescent molecules and enhanced concentration stability. The dye-bridged hybrimer shows much higher fluorescence intensity and low color-shift until it reached high concentration in comparison with DCM-doped system. And the proper lasing property is observed in dye-bridged hybrimer samples.

Keywords

Solid-state dye laser Organic–inorganic hybrid material Covalently bridged fluorescent dye Sol–gel process 

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (R01-2007-000-20815-0 (2009)).

References

  1. 1.
    Dubois A, Canva M, Brun A, Chaput F, Boilot J-P (1996) Appl Opt 35:3193CrossRefGoogle Scholar
  2. 2.
    Hermes RE, Allik TH, Chandra S, Hutchinson JA (1993) Appl Phys Lett 63:877CrossRefGoogle Scholar
  3. 3.
    Nhung TH, Canva M, Dao TTA, Chaput F, Brun A, Hung ND, Boilot J-P (2003) Appl Opt 42:2213CrossRefGoogle Scholar
  4. 4.
    Lam KS, Lo D (1998) Appl Phys B 66:427CrossRefGoogle Scholar
  5. 5.
    Bergmann A, Holzer W, Stark R, Gratz H, Penzkofer A, Amat-Guerri F, Costela A, Garcia-marieno I, Sastre R (2001) Chem Phys 271:201CrossRefGoogle Scholar
  6. 6.
    Faloss M, Canva M, Georges P, Brun A, Chaput F, Boilot J-P (1997) Appl Opt 36:6760CrossRefGoogle Scholar
  7. 7.
    Lin HT, Bescher E, Mackenzie JD, Dai H, Stafsudd OM (1992) J Mater Sci 27:5523CrossRefGoogle Scholar
  8. 8.
    Costela A, Garcia-marieno I, Barroso J, Sastre R (1998) J Appl Phys 83:650CrossRefGoogle Scholar
  9. 9.
    Cazeca MJ, Jiang X, Kumar J, Tripathy SK (1997) Appl Opt 36:4965CrossRefGoogle Scholar
  10. 10.
    Suratwala T, Gardlund Z, Davidson K, Uhlmann DR (1997) J Sol-Gel Sci Technol 8:953Google Scholar
  11. 11.
    Rahn MD, King TA (1998) J Mod Opt 45:1259Google Scholar
  12. 12.
    He GS, Bhawalkar JD, Zhao CF, Park CK, Prasad PN (1996) Appl Phys Lett 68:3549CrossRefGoogle Scholar
  13. 13.
    Schmidtke J, Stille W, Finkelmann H, Kim ST (2002) Adv Mater 14:746CrossRefGoogle Scholar
  14. 14.
    Yagi K, Shibata S, Yano T, Yasumori A, Yamane M, Dunn B (1995) J Sol-Gel Sci and Tech 4:67CrossRefGoogle Scholar
  15. 15.
    Canva M, Georges P, Perelgritz J-F, Brum A, Chaput F, Boilot J-P (1995) Appl Opt 34:428CrossRefGoogle Scholar
  16. 16.
    Knobbe ET, Dunn B, Fuqua PD, Nishida F (1990) Appl Opt 29:2729CrossRefGoogle Scholar
  17. 17.
    Yariv E, Reisfeld R (1999) Opt Mater 13:49CrossRefGoogle Scholar
  18. 18.
    Zhu X-L, Lo D (2000) Appl Phys Lett 77:2647CrossRefGoogle Scholar
  19. 19.
    Kang DJ, Bae BS (2007) Acc Chem Res 40:903CrossRefGoogle Scholar
  20. 20.
    Kang DJ, Kim WS, Bae BS (2005) Appl Phys Lett 87:22106/1Google Scholar
  21. 21.
    Yokoyama S, Nakahama T, Mashiko S (2005) J Lumin 111:285CrossRefGoogle Scholar
  22. 22.
    Yokoyama S, Otomo A, Mashiko S (2002) Appl Phys Lett 80:7CrossRefGoogle Scholar
  23. 23.
    Menaa B, Takahashi M, Tokuda Y, Yoko T (2008) J Photochem Photobiol A 194:362CrossRefGoogle Scholar
  24. 24.
    Carbonaro CM, Anedda A, Grandi S, Magistris A (2006) J Phys Chem B 110:12932CrossRefGoogle Scholar
  25. 25.
    Cui Y, Yu J, Gao J, Wang Z, Qian G (2009) J Sol-Gel Sci Technol 52:362CrossRefGoogle Scholar
  26. 26.
    Eo YJ, Lee TH, Kim SY, Kang JK, Han YS, Bae BS (2005) J Polym Sci Pol Phys 43:827CrossRefGoogle Scholar
  27. 27.
    Kim WS, Kim KS, Kim YC, Bae BS (2005) Thin Solid Films 476:181CrossRefGoogle Scholar
  28. 28.
    Lobo H, Bonilla JV (2003) Handbook of plastics analysis. Crc PressGoogle Scholar
  29. 29.
    Hanna DC, Large AC, Shepherd DP, Tropper AC, Chartier I, Ferrand B, Pelenc D (1993) Appl Phys Lett 63:7CrossRefGoogle Scholar
  30. 30.
    Yang P, Wirnsberger G, Huang HC, Cordero SR, McGehee MD, Scott B, Deng T, Whitesides GM, Chmelka BF, Buratto SK, Stucky GD (2000) Science 287:465CrossRefGoogle Scholar
  31. 31.
    Mackenzie JI (2007) IEEE J Sel Top Quantum Electron 13:626CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Laboratory of Optical Materials and Coating (LOMC)Korea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
  2. 2.Department of Display and Chemical EngineeringYeungnam UniversityGyeongsanKorea
  3. 3.Department of PhysicsYeungnam UniversityGyeongsanKorea

Personalised recommendations