Advertisement

Journal of Sol-Gel Science and Technology

, Volume 60, Issue 3, pp 426–436 | Cite as

MnO x /ZrO2 gel-derived materials for hydrogen peroxide decomposition

  • Esther Fanelli
  • Maria Turco
  • Annamaria Russo
  • Giovanni Bagnasco
  • Stefania Marchese
  • Pasquale Pernice
  • Antonio Aronne
Original Paper

Abstract

Manganese-yttrium-zirconium mixed oxide nanocomposites with three different Mn loadings (5, 15 and 30 wt%) were prepared by sol–gel synthesis. Amorphous xerogels were obtained for each composition. Their structural evolution with the temperature and textural properties were examined by thermogravimetry/differential thermal analysis, X-ray diffraction, diffuse reflectance UV–vis spectroscopy and N2 adsorption isotherms. Mesoporous materials with high surface area values (70–100 m2 g−1) were obtained by annealing in air at 550 °C. They are amorphous or contain nanocrystals of the tetragonal ZrO2 phase (T-ZrO2) depending on the Mn amount and exhibit Mn species with oxidation state higher than 2 as confirmed by temperature programmed reduction experiments. T-ZrO2 is the only crystallizing phase at 700 °C while the monoclinic polymorph and Mn3O4 start to appear only after a prolonged annealing at 1,000 °C. The samples annealed at 550 °C were studied as catalysts for H2O2 decomposition in liquid phase. Their catalytic activity was higher than that of previously studied Mn/Zr oxide systems prepared by impregnation. Catalytic data were described by a rate equation of Langmuir type. The decrease of catalytic activity with time was related to dissolution of a limited fraction (up to 15%) of Mn into the H2O2/H2O solution.

Keywords

Sol–gel MnOx/ZrO2 nanocomposites H2O2 decomposition Green propellant 

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 218819.

References

  1. 1.
    Sharlemann C, Schielb M, Amsuess R, Tajmar M, Miotti P, Kappenstein C, Batonneau Y, Brahmi R, Hunter C (2006) Proceedings of 3rd international conference on green propellant for space propulsion and 9th international hydrogen peroxide propulsion conference, Poitiers, France, 17–20 Sept. 2006Google Scholar
  2. 2.
    Pasini A, Torre L, Romeo L, Cervone A, d’Agostino L (2008) J. Propuls. Power 24:507–515Google Scholar
  3. 3.
    Russo Sorge A, Turco M, Pilone G, Bagnasco G (2004) J Propuls Power 20:1069–1075CrossRefGoogle Scholar
  4. 4.
    Pirault-Roy L, Kappenstein C, Guérin M, Eloirdi R (2002) J Propuls Power 16:1235–1241CrossRefGoogle Scholar
  5. 5.
    Turco M, Bagnasco G, Russo Sorge A (2005) In: Pierucci S (ed) Chemical Engineering Transactions, vol 6, pp 39–44Google Scholar
  6. 6.
    Kappenstein C, Pirault-Roy L, Guérin M, Wahdan T, Ali AA, Al-Sagheer F, Zaki MI (2002) Appl Catal A General 234:145–153CrossRefGoogle Scholar
  7. 7.
    Nohman AKH, Zaki MI (2006) Proceedings of 3rd international conference on green propellant for space propulsion and 9th international hydrogen peroxide propulsion conference, Poitiers, France, 17–20 Sept. 2006Google Scholar
  8. 8.
    Hasan MA, Zaki M, Pasupulety L, Kumari K (1999) Appl Catal A General 181:171–179CrossRefGoogle Scholar
  9. 9.
    Rusek JJ (1996) J Propuls Power 12:574–579CrossRefGoogle Scholar
  10. 10.
    Lopez EF, Escribano VS, Gallardo-Amores JM, Resini C, Busca G (2002) Solid State Sci 4:951–961CrossRefGoogle Scholar
  11. 11.
    López T, Alvarez M, Tzompantzi F, Picquart M (2006) J Sol–Gel Sci Tech 37:207–211CrossRefGoogle Scholar
  12. 12.
    Bokhimi X, Morales A, Novaro O, Portilla, López T, Tzompantzi F, Gómez (1998) J Solid State Chem 135:28–35CrossRefGoogle Scholar
  13. 13.
    Lemonnier S, Grandjean S, Robisson AC, Jolivet JP (2010) Dalton Trans 39:2254–2262CrossRefGoogle Scholar
  14. 14.
    Kemmitt RDW (1990) In: Bailar JC, Emeléus HJ, Nyholm R, Trotman-Dickenson AF (eds) Comprensive inorganic chemistry. Pergamon Press, OxfordGoogle Scholar
  15. 15.
    Vickery RC (1990) In: Bailar JC, Emeléus HJ, Nyholm R, Trotman-Dickenson AF (eds) Comprensive inorganic chemistry. Pergamon Press, OxfordGoogle Scholar
  16. 16.
    Rouquerol FJ, Sing K (1999) Adsorption by powders and porous solids: principles methodology and applications. Elsevier B.V., AmsterdamGoogle Scholar
  17. 17.
    Esposito S, Turco M, Bagnasco G, Cammarano C, Pernice P, Aronne A (2010) Appl Catal A General 372:48–57CrossRefGoogle Scholar
  18. 18.
    Livage J, Henry M, Sanchez C (1990) Sol–Gel science: the physics and chemistry of sol–gel processing. Academic Press, New YorkGoogle Scholar
  19. 19.
    Schubert U (2007) Acc Chem Res 40:730–737CrossRefGoogle Scholar
  20. 20.
    Aronne A, Pernice P, Marotta A (1991) J Mater Sci Lett 10:1136–1138CrossRefGoogle Scholar
  21. 21.
    Aronne A, Pernice P, Marotta A, Catauro M (1996) Thermochim Acta 275:75–82CrossRefGoogle Scholar
  22. 22.
    Sannino F, Pirozzi D, Aronne A, Fanelli E, Spaccini R, Yousuf A (2010) Environ Sci Technol 44:9476–9481CrossRefGoogle Scholar
  23. 23.
    Pirozzi D, Fanelli E, Aronne A, Pernice P, Mingione A (2009) J Mol Catal B Enzymat 59:116–120CrossRefGoogle Scholar
  24. 24.
    Valigi M, Gazzoli D, Dragone R, Marucci A, Mattei G (1996) J Mater Chem 6:403–408CrossRefGoogle Scholar
  25. 25.
    Zhao Q, Shih WY, Chang HL, Shih WH (2010) Ind Eng Chem Res 49:1725–1731CrossRefGoogle Scholar
  26. 26.
    Pomykalska D, Bućko MM, Rękas M (2010) Solid State Ionics 181:48–52CrossRefGoogle Scholar
  27. 27.
    Egger P, Dirè S, Ischia M, Campostrini R (2005) J Therm Anal Cal 81:407–415CrossRefGoogle Scholar
  28. 28.
    Keshavaraja A, Jacob NE, Ramaswamy AV (1995) Thermochim Acta 254:267–275CrossRefGoogle Scholar
  29. 29.
    Shannon RD (1976) Acta Cryst A32:751–767Google Scholar
  30. 30.
    Xing S, Hu C, Qu J, He H, Yang M (2008) Environ Sci Technol 42:3363–3368CrossRefGoogle Scholar
  31. 31.
    Froba M, Kohn R, Bouffaud G, Richard O, van Tendeloo G (1999) Chem Mater 11:2858–2865CrossRefGoogle Scholar
  32. 32.
    Muñoz MC, Beltrán S, Cerdá JI (2006) Surf Sci Rep 61:303Google Scholar
  33. 33.
    Velu S, Shah N, Jyothi TM, Sivasanker S (1999) Micropor Mesopor Mater 33:61–75CrossRefGoogle Scholar
  34. 34.
    Raciulete M, Afanasiev P (2009) Appl Catal A General 368:79–86CrossRefGoogle Scholar
  35. 35.
    Radwan NRE (2004) Appl Catal A General 257:177–191CrossRefGoogle Scholar
  36. 36.
    Deraz N-AM, Salim HH, El-Aal AA (2002) Mater Lett 53:102–109CrossRefGoogle Scholar
  37. 37.
    Salem IA, Elhag RI, Khali KMS (2000) Trans Metal Chem 25:260–264CrossRefGoogle Scholar
  38. 38.
    Zhou H, Shen YF, Wang JY, Chen X, O’Young CL, Suib SL (1998) J Catal 176:321–328CrossRefGoogle Scholar
  39. 39.
    Turco M, Bagnasco G, Russo Sorge A (2005). In: Pierucci S (ed) Chemical engineering transactions—7th Italian conference on chemical and process engineering. AIDIC Servizi S.r.l., vol 6, pp 39–44Google Scholar
  40. 40.
    Neaman A, Waller B, Mouele F, Trolard F, Bourrie G (2004) Eur J Soil Sci 55:47–54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Esther Fanelli
    • 1
  • Maria Turco
    • 2
  • Annamaria Russo
    • 3
  • Giovanni Bagnasco
    • 2
  • Stefania Marchese
    • 1
  • Pasquale Pernice
    • 1
  • Antonio Aronne
    • 1
  1. 1.Dipartimento di Ingegneria dei Materiali e della ProduzioneUniversità di Napoli Federico IINaplesItaly
  2. 2.Dipartimento di Ingegneria ChimicaUniversità di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di Ingegneria AerospazialeUniversità di Napoli Federico IINaplesItaly

Personalised recommendations