Skip to main content
Log in

Polybenzoxazine–silica (PBZ–SiO2) hybrid nanocomposites through in situ sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

New type of Polybenzoxazine–silica (PBZ–SiO2) hybrid nanocomposites was prepared through in situ sol–gel method. Benzoxazine was synthesized using bisphenol-A, trans-4-aminocyclohexanol hydrochloride and formaldehyde solution through Mannich condensation reaction and was characterized by FT-IR, 1HNMR and 13CNMR spectroscopy. The methodology adopted in the present study involves to formation of hydrogen bond interaction between the benzoxazine monomer and the silica matrix, followed by the ring opening polymerization of benzoxazine monomer through thermal curing to obtain a red brown transparent PBZ–SiO2 hybrid. The formation of hybrid nanocomposites was confirmed by FT-IR. Thermal and morphological properties of the hybrid materials were investigated by the differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM). The PBZ–SiO2 hybrids show improved thermal properties and glass transition (Tg) temperature. The nitrogen porosimetry study was carried out to confirm the nanometer level integration of polybenzoxazine in the PBZ–SiO2 hybrid nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sur GS, Mark JE (1985) Eur Polym J 21:1051

    Article  CAS  Google Scholar 

  2. Mark JE, Sur GS (1985) Polym Bull 14:325–329

    CAS  Google Scholar 

  3. Xu C, Eldada L, Wu C, Norwood RA, Shacklette CW, Yardley JT, Wei Y (1996) Chem Mater 8:2701–2703

    Article  CAS  Google Scholar 

  4. Davies BL, Samoc M, Woodruff M (1996) Chem Mater 8:2586–2594

    Article  Google Scholar 

  5. Dave BC, Dunn B, Valentine JS, Zink JI (1994) Anal Chem 66:1120

    Article  Google Scholar 

  6. Sun CC, Mark JE (1989) Polymer 30:104–106

    Article  CAS  Google Scholar 

  7. Ning X, Ishida HJ (1994) J Polym Sci Part A: Polym Chem 32:1121–1129

    Article  CAS  Google Scholar 

  8. Jin L, Agag T, Yagci Y, Ishida H (2011) Macromolecules 44:767–772

    Article  CAS  Google Scholar 

  9. Ishida H, Allen DJ (1996) J Polym Sci Part B: Polym Phys 34:1019–1030

    Article  CAS  Google Scholar 

  10. Takeichi T, Komiya I, Takayama Y (1997) Kyoka-Purasutikkus 43:109–117

    CAS  Google Scholar 

  11. Ishida H, Low HY (1997) Macromolecules 30:1099–1106

    Article  CAS  Google Scholar 

  12. Wang YX, Ishida H (1999) Polymer 40:4563–4570

    Article  CAS  Google Scholar 

  13. Shen SB, Ishida H (1999) J Polym Sci Part B: Polym Phys 37:3257–3268

    Article  CAS  Google Scholar 

  14. Macko JA, Ishida H (2001) Polymer 42:227–240

    Article  CAS  Google Scholar 

  15. Lu C, Cui Z, Guan C, Guan J, Yang B, Shen J (2003) Macromol Mater Eng 288:717–723

    Article  Google Scholar 

  16. Adachi K, Achimuthu A, Chujo Y (2004) Macromolecules 37:9793

    Article  CAS  Google Scholar 

  17. Huang H, Orler B, Wilkes GL (1987) Macromolecules 20:1322

    Article  CAS  Google Scholar 

  18. Wang B, Huang H, Wilkes GL, Liptak S, McGrath JE (1990) Polym Mater Sci Eng 63:892

    CAS  Google Scholar 

  19. Jothibasu S, Ashok Kumar A, Alagar M (2007) J Sol-Gel Sci Technol 43:337–445

    Article  CAS  Google Scholar 

  20. Ivankovic M, Brnardic I, Ivankovic H, Huskic M, Gajovic A (2009) Polymer 50:2544–2550

    Article  CAS  Google Scholar 

  21. Zhang X, Ye H, Xiao B, Yan L, Lv H, Jiang B (2010) J. Phys. Chem. C 114:19979–19983

    CAS  Google Scholar 

  22. Schramm C, Rinderer B, Tessadri R, Duelli H (2010) J Sol-Gel Sci Technol 53:579–586

    Article  CAS  Google Scholar 

  23. Jothibasu S, Ashok Kumar A, Alagar M (2011) High Perform Polym 23:11–21

    CAS  Google Scholar 

  24. Yuan QW, Mark JE (1999) Macromol Chem Phys 200:206

    Article  CAS  Google Scholar 

  25. Tamaki R, Chujo Y (1998) J Mater Chem 8:1113

    Article  CAS  Google Scholar 

  26. Mascia L, Tang TJ (1998) J Mater Chem 8:2417

    Article  CAS  Google Scholar 

  27. Kamahori K, Tada S, Ito K, Itsuno S (1999) Macromolecules 32:541

    Article  CAS  Google Scholar 

  28. Achimuthu A, Adachi K, Chujo Y (2004) J Poly Sci Part A Chem Ed 42:785

    Article  Google Scholar 

  29. Wu KH, Chang TC, Wang YT, Chiu YS (1999) J Polym Sci part A polym Chem 37:2275

    Article  CAS  Google Scholar 

  30. Chen W, Lee S, Lee L, Lin J (1999) J Mater Chem 9:2999

    Article  CAS  Google Scholar 

  31. Pu Z, Mark JE, Jethmalani JM, Ford WT (1997) Chem Mater 9:2442

    Article  CAS  Google Scholar 

  32. Landry CJT, Coltrain BK, Landry MR, Fitzgerald JJ, Long VK (1993) Macromolecules 26:3702

    Article  CAS  Google Scholar 

  33. Liu Y, Zhang W, Chen Y, Zheng S (2006) J Appl Polym Sci 99:927–936

    Article  CAS  Google Scholar 

  34. Lorjai P, Chaisuwan T, Wongkasemj S (2009) J Sol-Gel Sci Technol 52:56–64

    Article  CAS  Google Scholar 

  35. Agag T, Tsuchiya H, Takeichi T (2004) Polymer 45:7903–7910

    Article  CAS  Google Scholar 

  36. Ardhyananta H, Kawauchi T, Takeichi T, Ismail H (2010) High Perform Polym 22:609–632

    Article  CAS  Google Scholar 

  37. Ardhyananta H, Haniff Wahid M, Sasaki M, Agag T, Kawauchi T, Ismail H, Takeichi T (2008) Polymer 49:4585–4591

    Article  CAS  Google Scholar 

  38. Takeichi T, Guo Y, Rimdusit S (2005) Polymer 46:4909–4916

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to DST (Nanomission), SR/NM/NS-18/2010, New Delhi, Govt. of India., for the financial support and the Department of Mechanical Engineering, Anna University, for providing scanning electron microscopy analysis facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alagar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devaraju, S., Vengatesan, M.R., Ashok Kumar, A. et al. Polybenzoxazine–silica (PBZ–SiO2) hybrid nanocomposites through in situ sol–gel method. J Sol-Gel Sci Technol 60, 33–40 (2011). https://doi.org/10.1007/s10971-011-2547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2547-z

Keywords

Navigation