Polybenzoxazine–silica (PBZ–SiO2) hybrid nanocomposites through in situ sol–gel method

  • S. Devaraju
  • M. R. Vengatesan
  • A. Ashok Kumar
  • M. Alagar
Original Paper


New type of Polybenzoxazine–silica (PBZ–SiO2) hybrid nanocomposites was prepared through in situ sol–gel method. Benzoxazine was synthesized using bisphenol-A, trans-4-aminocyclohexanol hydrochloride and formaldehyde solution through Mannich condensation reaction and was characterized by FT-IR, 1HNMR and 13CNMR spectroscopy. The methodology adopted in the present study involves to formation of hydrogen bond interaction between the benzoxazine monomer and the silica matrix, followed by the ring opening polymerization of benzoxazine monomer through thermal curing to obtain a red brown transparent PBZ–SiO2 hybrid. The formation of hybrid nanocomposites was confirmed by FT-IR. Thermal and morphological properties of the hybrid materials were investigated by the differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM). The PBZ–SiO2 hybrids show improved thermal properties and glass transition (Tg) temperature. The nitrogen porosimetry study was carried out to confirm the nanometer level integration of polybenzoxazine in the PBZ–SiO2 hybrid nanocomposites.


Organic–inorganic hybrid nanocomposites Polybenzoxazine Tetraethoxysilane Sol–gel process Thermal stability Morphology 



The authors thank to DST (Nanomission), SR/NM/NS-18/2010, New Delhi, Govt. of India., for the financial support and the Department of Mechanical Engineering, Anna University, for providing scanning electron microscopy analysis facility.


  1. 1.
    Sur GS, Mark JE (1985) Eur Polym J 21:1051CrossRefGoogle Scholar
  2. 2.
    Mark JE, Sur GS (1985) Polym Bull 14:325–329Google Scholar
  3. 3.
    Xu C, Eldada L, Wu C, Norwood RA, Shacklette CW, Yardley JT, Wei Y (1996) Chem Mater 8:2701–2703CrossRefGoogle Scholar
  4. 4.
    Davies BL, Samoc M, Woodruff M (1996) Chem Mater 8:2586–2594CrossRefGoogle Scholar
  5. 5.
    Dave BC, Dunn B, Valentine JS, Zink JI (1994) Anal Chem 66:1120CrossRefGoogle Scholar
  6. 6.
    Sun CC, Mark JE (1989) Polymer 30:104–106CrossRefGoogle Scholar
  7. 7.
    Ning X, Ishida HJ (1994) J Polym Sci Part A: Polym Chem 32:1121–1129CrossRefGoogle Scholar
  8. 8.
    Jin L, Agag T, Yagci Y, Ishida H (2011) Macromolecules 44:767–772CrossRefGoogle Scholar
  9. 9.
    Ishida H, Allen DJ (1996) J Polym Sci Part B: Polym Phys 34:1019–1030CrossRefGoogle Scholar
  10. 10.
    Takeichi T, Komiya I, Takayama Y (1997) Kyoka-Purasutikkus 43:109–117Google Scholar
  11. 11.
    Ishida H, Low HY (1997) Macromolecules 30:1099–1106CrossRefGoogle Scholar
  12. 12.
    Wang YX, Ishida H (1999) Polymer 40:4563–4570CrossRefGoogle Scholar
  13. 13.
    Shen SB, Ishida H (1999) J Polym Sci Part B: Polym Phys 37:3257–3268CrossRefGoogle Scholar
  14. 14.
    Macko JA, Ishida H (2001) Polymer 42:227–240CrossRefGoogle Scholar
  15. 15.
    Lu C, Cui Z, Guan C, Guan J, Yang B, Shen J (2003) Macromol Mater Eng 288:717–723CrossRefGoogle Scholar
  16. 16.
    Adachi K, Achimuthu A, Chujo Y (2004) Macromolecules 37:9793CrossRefGoogle Scholar
  17. 17.
    Huang H, Orler B, Wilkes GL (1987) Macromolecules 20:1322CrossRefGoogle Scholar
  18. 18.
    Wang B, Huang H, Wilkes GL, Liptak S, McGrath JE (1990) Polym Mater Sci Eng 63:892Google Scholar
  19. 19.
    Jothibasu S, Ashok Kumar A, Alagar M (2007) J Sol-Gel Sci Technol 43:337–445CrossRefGoogle Scholar
  20. 20.
    Ivankovic M, Brnardic I, Ivankovic H, Huskic M, Gajovic A (2009) Polymer 50:2544–2550CrossRefGoogle Scholar
  21. 21.
    Zhang X, Ye H, Xiao B, Yan L, Lv H, Jiang B (2010) J. Phys. Chem. C 114:19979–19983Google Scholar
  22. 22.
    Schramm C, Rinderer B, Tessadri R, Duelli H (2010) J Sol-Gel Sci Technol 53:579–586CrossRefGoogle Scholar
  23. 23.
    Jothibasu S, Ashok Kumar A, Alagar M (2011) High Perform Polym 23:11–21Google Scholar
  24. 24.
    Yuan QW, Mark JE (1999) Macromol Chem Phys 200:206CrossRefGoogle Scholar
  25. 25.
    Tamaki R, Chujo Y (1998) J Mater Chem 8:1113CrossRefGoogle Scholar
  26. 26.
    Mascia L, Tang TJ (1998) J Mater Chem 8:2417CrossRefGoogle Scholar
  27. 27.
    Kamahori K, Tada S, Ito K, Itsuno S (1999) Macromolecules 32:541CrossRefGoogle Scholar
  28. 28.
    Achimuthu A, Adachi K, Chujo Y (2004) J Poly Sci Part A Chem Ed 42:785CrossRefGoogle Scholar
  29. 29.
    Wu KH, Chang TC, Wang YT, Chiu YS (1999) J Polym Sci part A polym Chem 37:2275CrossRefGoogle Scholar
  30. 30.
    Chen W, Lee S, Lee L, Lin J (1999) J Mater Chem 9:2999CrossRefGoogle Scholar
  31. 31.
    Pu Z, Mark JE, Jethmalani JM, Ford WT (1997) Chem Mater 9:2442CrossRefGoogle Scholar
  32. 32.
    Landry CJT, Coltrain BK, Landry MR, Fitzgerald JJ, Long VK (1993) Macromolecules 26:3702CrossRefGoogle Scholar
  33. 33.
    Liu Y, Zhang W, Chen Y, Zheng S (2006) J Appl Polym Sci 99:927–936CrossRefGoogle Scholar
  34. 34.
    Lorjai P, Chaisuwan T, Wongkasemj S (2009) J Sol-Gel Sci Technol 52:56–64CrossRefGoogle Scholar
  35. 35.
    Agag T, Tsuchiya H, Takeichi T (2004) Polymer 45:7903–7910CrossRefGoogle Scholar
  36. 36.
    Ardhyananta H, Kawauchi T, Takeichi T, Ismail H (2010) High Perform Polym 22:609–632CrossRefGoogle Scholar
  37. 37.
    Ardhyananta H, Haniff Wahid M, Sasaki M, Agag T, Kawauchi T, Ismail H, Takeichi T (2008) Polymer 49:4585–4591CrossRefGoogle Scholar
  38. 38.
    Takeichi T, Guo Y, Rimdusit S (2005) Polymer 46:4909–4916CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Devaraju
    • 1
  • M. R. Vengatesan
    • 1
  • A. Ashok Kumar
    • 2
  • M. Alagar
    • 1
  1. 1.Department of Chemical EngineeringAlagappa College of Technology, Anna UniversityChennaiIndia
  2. 2.Department of ChemistryArulmigu Palaniandavar College of Arts and CulturePalaniIndia

Personalised recommendations