Preparation and phase transition characterization of VO2 thin film on single crystal Si (100) substrate by sol–gel process

  • Qiwu Shi
  • Wanxia Huang
  • Jiazhen Yan
  • Yubo Zhang
  • Mao Mao
  • Yang Zhang
  • Yuanjie Xu
  • Yaxin Zhang


Vanadium dioxide (VO2) thin films were fabricated on single crystal Si (100) substrates by sol–gel method, including a process of annealing a vanadium pentoxide (V2O5) gel precursor at different temperatures. The crystalline structure and morphology of the films were investigated by XRD, FE-SEM and AFM, indicating that the films underwent the grain growth, agglomeration and grain refinement process with increased annealing temperatures. The film annealed at 500 °C exhibits the formation of VO2 phase with a strong (011) preferred orientation and high crystallinity, the surface of the film is uniform and compact with a grain size of about 120 nm. Meanwhile, the film exhibits excellent phase transition properties, with a decrease of transmittance from 35.5 to 2.5% at λ = 25 μm and more than 3 orders of resistivity magnitude variation bellow and above the phase transition temperature. The phase transition temperature is evaluated at 60.4 °C in the heating transition and 55.8 °C in the cooling transition. Furthermore, the phase transition property of the VO2 film appears to be able to remain stable over repetitive cycles 100 times.


VO2 thin film Sol–gel Single crystal Si substrate Phase transition 



This work was financially supported by the National Science Foundation of China (Grant Nos. 61072036) and the Science and Technology Supporting Programs Fund Project of Sichuan province (2009SZ0199). We would also thank Analytical and Testing center of Sichuan University for their XRD analysis.


  1. 1.
    Manning TD, Parkin IP, Pemble ME, Sheel D, Vernardou D (2006) Intelligent window coatings: atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide. Chem Mater 16:744–749CrossRefGoogle Scholar
  2. 2.
    Muraoka Y, Ueda Y, Hiroi Z (2002) Large modification of the metal-insulator transition temperature in strained VO2 films grown on TiO2 substrates. J Phys Chem Solids 63:965–967CrossRefGoogle Scholar
  3. 3.
    Lappalainen J, Heinilehto S, Jantunen H, Lantto V (2008) Electrical and optical properties of metal-insulator-transition VO2 thin films. J Electroceram 22(1–3):73–77Google Scholar
  4. 4.
    Morin FJ (1959) Oxides which show a metal-insulator transition at the neel temperature. Phys Rev Lett 3:34–36CrossRefGoogle Scholar
  5. 5.
    Kim HT, Chae BG, Youn DH, Kim G, Kang KY, Lee SJ, Kim K, Lim YS (2005) Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices. Appl Phys Lett 86:242101CrossRefGoogle Scholar
  6. 6.
    Cavalleri A, Tóth Cs, Siders CW, Squier JA et al (2001) Femtosecond structure dynamics in VO2 during an ultrafast solid–solid phase transition. Phys Rev Lett 87:237401CrossRefGoogle Scholar
  7. 7.
    Cao J, Ertekin E, Srinivasan V, Fan W, Huang S et al (2009) Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nat Nanotechnol 4:732–737CrossRefGoogle Scholar
  8. 8.
    Manning TD, Parkin IP (2004) Atmospheric pressure chemical vapour deposition of tungsten doped vanadium (IV) oxide from VOCl3, water and WCl6. J Mater Chem 14:2554–2559CrossRefGoogle Scholar
  9. 9.
    Jerominek H, Picard F, Vincent D (1993) Vanadium oxide films for optical switching and detection. Opt Eng 32:2092–2099CrossRefGoogle Scholar
  10. 10.
    Huang WX, Yin XG, Huang CP, Wang QJ, Miao TF, Zhu YY (2010) Optical switching of a metamaterial by temperature controlling. Appl Phys Lett 96:261908CrossRefGoogle Scholar
  11. 11.
    Messaoud TB, Landry G, Gariépy JP, Ramamoorthy B, Ashrit PV, Haché A (2008) High contrast optical switching in vanadium dioxide thin films. Opt Commun 281:6024–6027CrossRefGoogle Scholar
  12. 12.
    Driscoll T, Palit S, Qazilbash MM, Brehm M, Keilmann F et al (2008) Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl phys lett 93:024101CrossRefGoogle Scholar
  13. 13.
    Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW et al (2009) Memory metamaterials. Science 325:1518–1521CrossRefGoogle Scholar
  14. 14.
    Dai JM, Zhang JQ, Zhang WL, Grischkowsky D (2004) Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon. J Opt Soc Am B 21:1379–1386CrossRefGoogle Scholar
  15. 15.
    Jeon TI, Grischkowsky D (1997) Nature of conduction in doped silicon. Phys Rev Lett 78:1106–1109CrossRefGoogle Scholar
  16. 16.
    Partlow DP, Gurkovich SR, Radford KC, Denes LJ (1991) Switchable vanadium oxide films by a sol-gel process. J Appl Phys 70:443–452CrossRefGoogle Scholar
  17. 17.
    Ozer N (1997) Electrochemical properties of sol-gel deposited vanadium pentoxide films. Thin Solid Films 305:80–87CrossRefGoogle Scholar
  18. 18.
    Yuan NY, Li JH, Lin CL (2002) Valence reduction process from sol-gel V2O5 to VO2 thin films. Appl Surf Sci 191:176–180CrossRefGoogle Scholar
  19. 19.
    Guhathakurta S, Subramanian A (2007) Effect of hydrofluoric acid in oxidizing acid mixtures on the hydroxylation of silicon surface. J Electrochem Soc 154:136–147CrossRefGoogle Scholar
  20. 20.
    Yan JZ, Zhang Y, Huang WX, Tu MJ (2008) Effect of Mo-W Co-doping on semiconductor-metal phase transition temperature of vanadium dioxide film. Thin Solid Films 516:8554–8558CrossRefGoogle Scholar
  21. 21.
    Nag J, Hanlund RF Jr (2008) Synthesis of vanadium dioxide thin films and nanoparticles. J Phys-Condens Mat 20:264016CrossRefGoogle Scholar
  22. 22.
    Livage J, Guzman G, Beteille F, Dacadson P (1997) Optical properties of sol-gel derived vanadium oxide films. J Sol-Gel Sci Technol 8:857–865Google Scholar
  23. 23.
    Bhushan B, Tokachichu DR, Keener MT, Lee SC (2005) Morphology and adhesion of biomolecules on silicon based surfaces. Acta Biomater 1:327–341CrossRefGoogle Scholar
  24. 24.
    Chan BG, Kim HT, Yun SJ, Kim BJ et al (2007) Comparative analysis of VO2 thin films prepared on sapphire and SiO2 substrates by the sol-gel process. Jpn J Appl Phys 46:738–743CrossRefGoogle Scholar
  25. 25.
    Yan JZ, Huang WX, Zhang Y, Liu XJ, Tu MJ (2008) Characterization of preferred orientated vanadium dioxide film on muscovite (001) substrate. Phys Stat Sol 205:2409–2412CrossRefGoogle Scholar
  26. 26.
    Jepsen PU, Fischer BM, Thoman A et al (2006) Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Phys Rev B 74:205103CrossRefGoogle Scholar
  27. 27.
    Yang TH, Aggarwal R, Gupta A et al (2010) Semiconductor-metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates. J Appl Phys 107:053514CrossRefGoogle Scholar
  28. 28.
    Youn DH, Kim HT, Chae BG, Hwang YJ, Lee JW, Maeng SL, Kang KY (2004) Phase and structural characterization of vanadium oxide films grown on amorphous SiO2/Si substrates. J Vac Sci Technol A 22:719–724CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Qiwu Shi
    • 1
  • Wanxia Huang
    • 1
  • Jiazhen Yan
    • 1
  • Yubo Zhang
    • 1
  • Mao Mao
    • 1
  • Yang Zhang
    • 1
  • Yuanjie Xu
    • 1
  • Yaxin Zhang
    • 2
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China
  2. 2.School of Physical ElectronicsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations