Skip to main content
Log in

Preparation and phase transition characterization of VO2 thin film on single crystal Si (100) substrate by sol–gel process

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) thin films were fabricated on single crystal Si (100) substrates by sol–gel method, including a process of annealing a vanadium pentoxide (V2O5) gel precursor at different temperatures. The crystalline structure and morphology of the films were investigated by XRD, FE-SEM and AFM, indicating that the films underwent the grain growth, agglomeration and grain refinement process with increased annealing temperatures. The film annealed at 500 °C exhibits the formation of VO2 phase with a strong (011) preferred orientation and high crystallinity, the surface of the film is uniform and compact with a grain size of about 120 nm. Meanwhile, the film exhibits excellent phase transition properties, with a decrease of transmittance from 35.5 to 2.5% at λ = 25 μm and more than 3 orders of resistivity magnitude variation bellow and above the phase transition temperature. The phase transition temperature is evaluated at 60.4 °C in the heating transition and 55.8 °C in the cooling transition. Furthermore, the phase transition property of the VO2 film appears to be able to remain stable over repetitive cycles 100 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Manning TD, Parkin IP, Pemble ME, Sheel D, Vernardou D (2006) Intelligent window coatings: atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide. Chem Mater 16:744–749

    Article  Google Scholar 

  2. Muraoka Y, Ueda Y, Hiroi Z (2002) Large modification of the metal-insulator transition temperature in strained VO2 films grown on TiO2 substrates. J Phys Chem Solids 63:965–967

    Article  CAS  Google Scholar 

  3. Lappalainen J, Heinilehto S, Jantunen H, Lantto V (2008) Electrical and optical properties of metal-insulator-transition VO2 thin films. J Electroceram 22(1–3):73–77

    Google Scholar 

  4. Morin FJ (1959) Oxides which show a metal-insulator transition at the neel temperature. Phys Rev Lett 3:34–36

    Article  CAS  Google Scholar 

  5. Kim HT, Chae BG, Youn DH, Kim G, Kang KY, Lee SJ, Kim K, Lim YS (2005) Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices. Appl Phys Lett 86:242101

    Article  Google Scholar 

  6. Cavalleri A, Tóth Cs, Siders CW, Squier JA et al (2001) Femtosecond structure dynamics in VO2 during an ultrafast solid–solid phase transition. Phys Rev Lett 87:237401

    Article  CAS  Google Scholar 

  7. Cao J, Ertekin E, Srinivasan V, Fan W, Huang S et al (2009) Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nat Nanotechnol 4:732–737

    Article  CAS  Google Scholar 

  8. Manning TD, Parkin IP (2004) Atmospheric pressure chemical vapour deposition of tungsten doped vanadium (IV) oxide from VOCl3, water and WCl6. J Mater Chem 14:2554–2559

    Article  CAS  Google Scholar 

  9. Jerominek H, Picard F, Vincent D (1993) Vanadium oxide films for optical switching and detection. Opt Eng 32:2092–2099

    Article  CAS  Google Scholar 

  10. Huang WX, Yin XG, Huang CP, Wang QJ, Miao TF, Zhu YY (2010) Optical switching of a metamaterial by temperature controlling. Appl Phys Lett 96:261908

    Article  Google Scholar 

  11. Messaoud TB, Landry G, Gariépy JP, Ramamoorthy B, Ashrit PV, Haché A (2008) High contrast optical switching in vanadium dioxide thin films. Opt Commun 281:6024–6027

    Article  Google Scholar 

  12. Driscoll T, Palit S, Qazilbash MM, Brehm M, Keilmann F et al (2008) Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl phys lett 93:024101

    Article  Google Scholar 

  13. Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW et al (2009) Memory metamaterials. Science 325:1518–1521

    Article  CAS  Google Scholar 

  14. Dai JM, Zhang JQ, Zhang WL, Grischkowsky D (2004) Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon. J Opt Soc Am B 21:1379–1386

    Article  CAS  Google Scholar 

  15. Jeon TI, Grischkowsky D (1997) Nature of conduction in doped silicon. Phys Rev Lett 78:1106–1109

    Article  CAS  Google Scholar 

  16. Partlow DP, Gurkovich SR, Radford KC, Denes LJ (1991) Switchable vanadium oxide films by a sol-gel process. J Appl Phys 70:443–452

    Article  CAS  Google Scholar 

  17. Ozer N (1997) Electrochemical properties of sol-gel deposited vanadium pentoxide films. Thin Solid Films 305:80–87

    Article  Google Scholar 

  18. Yuan NY, Li JH, Lin CL (2002) Valence reduction process from sol-gel V2O5 to VO2 thin films. Appl Surf Sci 191:176–180

    Article  CAS  Google Scholar 

  19. Guhathakurta S, Subramanian A (2007) Effect of hydrofluoric acid in oxidizing acid mixtures on the hydroxylation of silicon surface. J Electrochem Soc 154:136–147

    Article  Google Scholar 

  20. Yan JZ, Zhang Y, Huang WX, Tu MJ (2008) Effect of Mo-W Co-doping on semiconductor-metal phase transition temperature of vanadium dioxide film. Thin Solid Films 516:8554–8558

    Article  CAS  Google Scholar 

  21. Nag J, Hanlund RF Jr (2008) Synthesis of vanadium dioxide thin films and nanoparticles. J Phys-Condens Mat 20:264016

    Article  Google Scholar 

  22. Livage J, Guzman G, Beteille F, Dacadson P (1997) Optical properties of sol-gel derived vanadium oxide films. J Sol-Gel Sci Technol 8:857–865

    CAS  Google Scholar 

  23. Bhushan B, Tokachichu DR, Keener MT, Lee SC (2005) Morphology and adhesion of biomolecules on silicon based surfaces. Acta Biomater 1:327–341

    Article  Google Scholar 

  24. Chan BG, Kim HT, Yun SJ, Kim BJ et al (2007) Comparative analysis of VO2 thin films prepared on sapphire and SiO2 substrates by the sol-gel process. Jpn J Appl Phys 46:738–743

    Article  Google Scholar 

  25. Yan JZ, Huang WX, Zhang Y, Liu XJ, Tu MJ (2008) Characterization of preferred orientated vanadium dioxide film on muscovite (001) substrate. Phys Stat Sol 205:2409–2412

    Article  CAS  Google Scholar 

  26. Jepsen PU, Fischer BM, Thoman A et al (2006) Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Phys Rev B 74:205103

    Article  Google Scholar 

  27. Yang TH, Aggarwal R, Gupta A et al (2010) Semiconductor-metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates. J Appl Phys 107:053514

    Article  Google Scholar 

  28. Youn DH, Kim HT, Chae BG, Hwang YJ, Lee JW, Maeng SL, Kang KY (2004) Phase and structural characterization of vanadium oxide films grown on amorphous SiO2/Si substrates. J Vac Sci Technol A 22:719–724

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (Grant Nos. 61072036) and the Science and Technology Supporting Programs Fund Project of Sichuan province (2009SZ0199). We would also thank Analytical and Testing center of Sichuan University for their XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanxia Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Q., Huang, W., Yan, J. et al. Preparation and phase transition characterization of VO2 thin film on single crystal Si (100) substrate by sol–gel process. J Sol-Gel Sci Technol 59, 591–597 (2011). https://doi.org/10.1007/s10971-011-2533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2533-5

Keywords

Navigation