Silica covered porphyrin microstructures obtained in sol–gel processes

  • Magdalena Staszewska
  • Monika Dzieciuch
  • Joanna Lewandowska
  • Mariusz Kepczynski
  • Szczepan Zapotoczny
  • Marcin Oszajca
  • Anna Łatkiewicz
  • Maria Nowakowska
Original paper


In this article, we report on the formation of well-defined highly emissive silica-covered porphyrin microstructures in base-catalyzed sol–gel processes. The microstructures were obtained by self-assembly of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (mTHPP) at room temperature. Tetraethoxysilane (TEOS) was used as a silica precursor. The hybrid mTHPP- silica particles were characterized by means of reflectance UV–Vis and microscopy techniques including atomic force microscopy, scanning electron microscopy (SEM) and confocal fluorescence microscopy (CM). The SEM and TEM observations revealed that depending on the porphyrin concentration used in the synthesis, the shape of the hybrid mTHPP-silica particles has changed from ribbon-like (c mTHPP = 2.09 mM) to rhombus-like structures (c mTHPP = 4.35 mM). The ribbons were straight-edged, uniform in width (1.2–1.8 μm) and height (350–400 nm), and variable in length (40–100 μm). The rhombs were 1–3.7 μm in height, 7–25 μm in length, and 3.5–15 μm in width, and the ratio of length to width was uniform and equal to ca. 1.8–2. UV–Vis absorption spectra indicated that the J-aggregates and H-aggregates formed in the systems with lower and higher porphyrin content, respectively. Formation of different type of porphyrin aggregates in both systems resulted in different emission spectra, as it was shown with CM.


Porphyrin Sol–gel Microstructures Silica Fluorescence 



The Project was operated within the Foundation for Polish Science Team Programme co-financed by the EU European Regional Development Fund, Polymed, TEAM/2008-2/6. The research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-12-023/08).


  1. 1.
    Bindig U, Ulatowska-Jarza A, Kopaczynska M, Müller G, Podbielska H (2008) Laser Phys 18(1):63–72CrossRefGoogle Scholar
  2. 2.
    Santos SF, Santos ML, Almeidaa LE, Costa NB Jr, Gimenez IF, Araki K, Mayer I, Engelmann FM, Toma HE, Barreto LS (2007) J Colloid Interface Sci 305:264–269CrossRefGoogle Scholar
  3. 3.
    Parkhots MV, Knyukshto VN, Isakov GA (2003) J Appl Spectrosc 70:921–926CrossRefGoogle Scholar
  4. 4.
    Buscher CT, McBranch D, Li D (1996) J Am Chem Soc 118:2950–2953CrossRefGoogle Scholar
  5. 5.
    Chen H, Farahat MS, Law K-Y, Whitten DG (1996) J Am Chem Soc 118:2584–2594CrossRefGoogle Scholar
  6. 6.
    Hikal WM, Harmon HJ (2009) Polyhedron 28:113–120CrossRefGoogle Scholar
  7. 7.
    Meadows PJ, Dujardin E, Halla SR, Mann S (2005) Chem Commun 3688–3690Google Scholar
  8. 8.
    De la Luz V, Garcıa-Sanchez MA, Campero A (2007) J Non-Cryst Solids 353:2143–2149CrossRefGoogle Scholar
  9. 9.
    Garcıa-Sanchez MA, Campero A (2004) J Non-Cryst Solids 333:226–230CrossRefGoogle Scholar
  10. 10.
    Fuqua PD, Dunn B, Zink JI (1998) J Sol Gel Sci Technol 11:241–250CrossRefGoogle Scholar
  11. 11.
    Garcia Sanchez MA, SR Tello S, Sosa FR, Campero A (2006) J Sol Gel Sci Technol 37:93–97CrossRefGoogle Scholar
  12. 12.
    Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  13. 13.
    Venkatramaiah N, Venkatesan R (2010) Mater Chem Phys 125:729–738CrossRefGoogle Scholar
  14. 14.
    Shirikawa M, Kawano S, Fujita N, Sada K, Shinkai S (2003) J Org Chem 68:5037–5044CrossRefGoogle Scholar
  15. 15.
    Zhao L, Ma R, Li J, An Y, Shi L (2008) Biomacromolecules 9:2601–2608CrossRefGoogle Scholar
  16. 16.
    Mati NC, Mazumdar S, Periasmy N (1998) J Phys Chem B 102:1528–1538CrossRefGoogle Scholar
  17. 17.
    Green DL, Jayasundara S, Lam YF, Harris MT (2003) J Non-Cryst Solids 315:166–179CrossRefGoogle Scholar
  18. 18.
    Li L-L, Fu X-F, Ren Z, Zhao Y-G, Feng W, Ch-H Yan (2010) Langmuir 36(20):15730–15733CrossRefGoogle Scholar
  19. 19.
    Roy G, Miravet JF, Escuder B, Sanchez C, Llusar M (2006) J Mater Chem 16:1817–1824CrossRefGoogle Scholar
  20. 20.
    Lei Z, Pang X, Li N, Lin L, Lin Y (2009) J Mater Process Technol 209:3218–3225CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Magdalena Staszewska
    • 1
  • Monika Dzieciuch
    • 1
  • Joanna Lewandowska
    • 1
  • Mariusz Kepczynski
    • 1
  • Szczepan Zapotoczny
    • 1
  • Marcin Oszajca
    • 1
  • Anna Łatkiewicz
    • 2
  • Maria Nowakowska
    • 1
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakówPoland
  2. 2.Laboratory of Field Emission Scanning Electron Microscopy and Microanalysis at the Institute of Geological Sciences of the Jagiellonian UniversityKrakówPoland

Personalised recommendations