Advertisement

Journal of Sol-Gel Science and Technology

, Volume 59, Issue 1, pp 117–127 | Cite as

Patterning of sol gel thin films by capillary force assisted soft lithographic technique

  • Devika Sil
  • Rimlee Deb Roy
  • Sunirmal Jana
  • Rabibrata Mukherjee
  • Shyamal Kumar Bhadra
  • Prasanta Kumar Biswas
Original Paper

Abstract

Patterning of sol gel based silica and silica–titania films has been developed at room temperature by soft lithographic technique. Corresponding metal alkoxides have been utilized for the preparation of precursor sols. Elastomeric stamps of polydimethylsiloxane (PDMS) are used to emboss patterns of a master grating on the as-prepared silica and silica–titania films obtained by sol gel process. Pressure-less capillary force lithography has been used to fabricate both 1-D and 2-D ordered structures of simple stripe patterns. A modified solvent assisted lithography and micro-molding in capillaries yielded stable and high fidelity 1-D structures for silica and silica–titania films over a large area.

Keywords

Capillary force lithography Sol–gel processing Patterning of thin films PDMS AFM 

Notes

Acknowledgments

The authors would like to thank the Director, CGCRI, Kolkata for support and encouragement for the work. This work has been carried out under the sponsorship of DST, Govt. of India (Sanction No.: DST/TSG/PT/2006/74). Two authors (DS and RDR) thankfully acknowledge DST for providing their research fellowships.

References:

  1. 1.
    Barrett CR (1993) Mater Res Soc Bull XVIII(7):3Google Scholar
  2. 2.
    Bryzek J (1996) Sensors July:4Google Scholar
  3. 3.
    Clark RA, Hieptas PB, Ewing AG (1997) Anal Chem 69:259CrossRefGoogle Scholar
  4. 4.
    Wu MC, Lin LY, Lee SS, King CR (1996) Laser Focus World February:64Google Scholar
  5. 5.
    Briceno G, Chang HY, Sun XD, Schultz PG, Xiang XD (1995) Science 270:273CrossRefGoogle Scholar
  6. 6.
    Bryzek J, Peterson K, McCulley W (1994) IEEE Spectrum May:20CrossRefGoogle Scholar
  7. 7.
    Manz A (1996) CHIMIA 59:140Google Scholar
  8. 8.
    Kovacs GTA, Petersen K, Albin M (1996) Anal Chem 68:407A–4012ACrossRefGoogle Scholar
  9. 9.
    Szendro I (2001) Proc SPIE 4284:80CrossRefGoogle Scholar
  10. 10.
    Suh KY, Kim YS, Lee HH (2001) Adv Mater 13:1386CrossRefGoogle Scholar
  11. 11.
    Xia Y, Rogers JA, Paul KE, Whitesides GM (1999) Chem Rev 99:1823CrossRefGoogle Scholar
  12. 12.
    Xia Y, Whitesides GM (1998) Angew Chem Int Ed 37:550CrossRefGoogle Scholar
  13. 13.
    Chou SY, Krauss PR, Renstrom PJ (1996) Science 272:85CrossRefGoogle Scholar
  14. 14.
    Xia Y, Whitesides GM (1995) J Am Chem Soc 117:3274CrossRefGoogle Scholar
  15. 15.
    Rogers JA, Meier M, Dodabalapur A (1998) Appl Phys Lett 73:1766CrossRefGoogle Scholar
  16. 16.
    Schaffer E, Thurn-Albrecht T, Russell TP, Steiner U (2000) Nature 403:874CrossRefGoogle Scholar
  17. 17.
    Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Science 283:661CrossRefGoogle Scholar
  18. 18.
    Drury CJ, Mutsaers CMJ, Hart CM, Matters M, de Leeuw DM (1998) Appl Phys Lett 73:108CrossRefGoogle Scholar
  19. 19.
    Wang HY, Deeman N, Gauzner G, US Patent No. 7033683Google Scholar
  20. 20.
    Mukherjee R, Sharma A, Gonuguntla M, Patil GK (2008) J Nanosci Nanotech 8:1CrossRefGoogle Scholar
  21. 21.
    Suh KY, Lee HH (2002) Adv Mater 14:346CrossRefGoogle Scholar
  22. 22.
    Mukherjee R, Sharma A, Patil G, Faruqui D, Pattader PSG (2008) Bull Mater Sci 31:249CrossRefGoogle Scholar
  23. 23.
    Xia Y, Kim E, Whitesides GM (1996) Chem Mater 8:1558CrossRefGoogle Scholar
  24. 24.
    Fardad A, Andrews M, Milova G, Malek-Tabrizi A, Najafi I (1998) Appl Opt 37:2429CrossRefGoogle Scholar
  25. 25.
    Herzig HP (1997) Micro-optics: elements, systems and applications. Taylor & Francis, LondonGoogle Scholar
  26. 26.
    Biswas PK, Kundu D, Ganguli D (1989) J Mater Sci Lett 8:1436CrossRefGoogle Scholar
  27. 27.
    Atta AK, Biswas PK, Ganguli D (1990) J Non-Cryst Solids 125:202CrossRefGoogle Scholar
  28. 28.
    Kim E, Xia Y, Whitesides GM (1995) Nature 376:581CrossRefGoogle Scholar
  29. 29.
    Gonuguntla M, Sharma A, Mukherjee R, Subramaniam SA (2006) Langmuir 22:7066CrossRefGoogle Scholar
  30. 30.
    Yu X, Wang Z, Xing R, Luan S, Han Y (2005) Polymer 46:11099CrossRefGoogle Scholar
  31. 31.
    Erhardt MK, Nuzzo RG (1999) Langmuir 15:2188CrossRefGoogle Scholar
  32. 32.
    Doshi DA, Huesing NK, Lu M, Fan H, Lu Y, Simmons-Potter K, Potter BG Jr, Hurd AJ, Brinker CJ (2000) Science 290:107CrossRefGoogle Scholar
  33. 33.
    Jana S, Lim MA, Baek IC, Kim CH, Seok SI (2008) Mater Chem Phys 112:1008CrossRefGoogle Scholar
  34. 34.
    Akram D, Ahmad S, Sharmin E, Ahmad S (2010) Macromol Chem Phys 211:412CrossRefGoogle Scholar
  35. 35.
    Schrijnemakers K, Vansant EF (2001) Porous Mater J 8:83CrossRefGoogle Scholar
  36. 36.
    Cheng P, Zheng M, Jin Y, Huang Q, Gu M (2003) Lett Matter 57:2989CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Devika Sil
    • 1
    • 4
  • Rimlee Deb Roy
    • 2
  • Sunirmal Jana
    • 1
  • Rabibrata Mukherjee
    • 3
    • 5
  • Shyamal Kumar Bhadra
    • 2
  • Prasanta Kumar Biswas
    • 1
  1. 1.Sol–Gel DivisionCentral Glass and Ceramic Research InstituteJadavpurIndia
  2. 2.Fibre Optics and Photonics DivisionCentral Glass and Ceramic Research InstituteJadavpurIndia
  3. 3.Analytical Facility DivisionCentral Glass and Ceramic Research InstituteJadavpurIndia
  4. 4.Temple UniversityPhiladelphiaUSA
  5. 5.Indian Institute of Technology (IIT)KharagpurIndia

Personalised recommendations