Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications

  • Sadanand Pandey
  • Shivani B. Mishra
Original Paper


Organic/inorganic hybrid materials prepared by the sol–gel approach have rapidly become a fascinating new field of research in materials science. The explosion of activity in this area in the past decade has made tremendous progress in both the fundamental understanding of the sol–gel process and the development and applications of new organic/inorganic hybrid materials. Polymer-inorganic nanocomposite present an interesting approach to improve the separation properties of polymer material because they possess properties of both organic and inorganic such as good permeability, selectivity, mechanical strength, and thermal and chemical stability. Composite material derived by combining the sol–gel approach and organic polymers synthesis of hybrid material were the focus area of review It has also been demonstrated in this review that a more complete understanding of their structure–property behavior can be gained by employing many of the standard tools that are utilized for developing similar structure–property relationships of organic polymers. This review article is introductory in nature and gives introduction to composite materials/nanocomposite, their applications and the methods commonly employed for their synthesis and characterization. A brief literature survey on the polysaccharide templated and polysaccharide/protein dual templated synthesis of silica composite materials is also presented in this review article.


Nanocomposites Thermal properties Sol–gel method Hybrid material Silica precursor 



We are thankful to University of Johannesburg, South Africa and National Research foundation (NRF) for the financial assistance needed to carry out this review work.


  1. 1.
    Wu W, Chen M, Liang S, Wang X, Chen J, Zhou F (2008) J Colloid Interface Sci 326:478–482Google Scholar
  2. 2.
    Ramam K, Lopez M (2008) J Alloys Compd 466:398–403Google Scholar
  3. 3.
    Kim SH, Koh JH (2008) J Eur Ceram Soc 28:2969–2973Google Scholar
  4. 4.
    Martines MAU, Davolos MR, Júnior MJ, de Souza DF, Nunes LAO (2008) J Lumin 128:1787–1790Google Scholar
  5. 5.
    Papenfuss J (2008) Mod Plast Worldw 85:139–140Google Scholar
  6. 6.
    Tsuda K (2007) J Jpn Petrol Inst 50:240–248Google Scholar
  7. 7.
    Rogers M, Small A, Amos T, Johnson A, Sterner L (2006) In: International SAMPE symposium and exhibition (Proceedings), vol 51, p 7Google Scholar
  8. 8.
    Zhang Y, Vassilopoulos AP, Keller T (2008) Int J Fatigue 30:1813–1820Google Scholar
  9. 9.
    Meric G, Ruyter IE (2007) Acta Odontol Scand 65:306–312Google Scholar
  10. 10.
    Hufenbach W, Weimann C, Richter H, Langkamp A, Behnisch T (2007) Keramische Zeitschrift 59:342–344Google Scholar
  11. 11.
    Janschek P (2004) ThyssenKrupp techforum 76–79Google Scholar
  12. 12.
    Muşat V (2008) Metalurgia Int 13:29–35Google Scholar
  13. 13.
    McCarthy JR, Weissleder R (2008) Adv Drug Deliv Rev 60:1241–1251Google Scholar
  14. 14.
    Groenewolt M (2008) Progr Org Coat 61:106–109Google Scholar
  15. 15.
    Amerio E, Fabbri P, Malucelli G, Messori M, Sangermano M, Taurino R (2008) Prog Org Coat 62:129–133Google Scholar
  16. 16.
    Wu LYL, Chwa E, Chen Z, Zeng XT (2008) Thin Solid Films 516:1056–1062Google Scholar
  17. 17.
    Komarneni S (2007) Mater Res Innov 11:37–38Google Scholar
  18. 18.
    Costacurta S, Malfatti L, Falcaro P, Innocenzi P (2007) J Sol-Gel Sci Technol 44:59–64Google Scholar
  19. 19.
    Hwan KK, Kang SJ, Choi SK, Min YH, Yoon CS (1999) Chem Mater 11:779–788Google Scholar
  20. 20.
    De Matteis F, Prosposito P, Sarcinelli F, Casalboni M, Pizzoferrato R, Furlani A, Russo MV, Vannucci A, Varasi M (1999) J Non-Cryst Solids 245:15–19Google Scholar
  21. 21.
    Ng EP, Mintova S (2008) Microporous Mesoporous Mater 114:1–26Google Scholar
  22. 22.
    Xu L, Lee HK (2008) J Chromatogr A 1195:78–84Google Scholar
  23. 23.
    Guo Y, Mylonakis A, Zhang Z, Yang G, Lelkes PI, Che S, Lu Q, Wei Y (2008) ChemA Eur J 14:2909–2917Google Scholar
  24. 24.
    Gun J, Lev O (1996) Anal Chim Acta 336:1–3Google Scholar
  25. 25.
    Avellaneda CO, Dahmouche K, Bulhões LOS, Pawlicka A (2000) J Sol-Gel Sci Technol 19:447–451Google Scholar
  26. 26.
    Fei J, Lim KG, Palmore GTR (2008) Chem Mater 20:3832–3839Google Scholar
  27. 27.
    Ozer N, Cronin JP (2004) Key Eng Mater 264-268(I): 337–342Google Scholar
  28. 28.
    Yang H, Zhu Y (2007) Biosens Bioelectron 22:2989–2993Google Scholar
  29. 29.
    Fang Z, Wang S, Zhao L, Dong B, Xu Z, Ren J, Yang Q (2008) Mater Lett 62:1514–1517Google Scholar
  30. 30.
    Itoh T, Matsubara I, Shin W, Izu N (2007) Mater Lett 61:4031–4034Google Scholar
  31. 31.
    Zhang Y, Shan L, Tu Z, Zhang Y (2008) Sep Purif Technol 63:207–212Google Scholar
  32. 32.
    Nam SE, Kim SO, Kang Y, Lee JW, Lee KH (2008) J Membr Sci 322:466–474Google Scholar
  33. 33.
    Landi E, Martorana S, Tampieri A, Guicciardi S, Melandri C (2008) Key Eng Mater 361–363:547–550Google Scholar
  34. 34.
    Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites Adv Mater 19:1309–1319Google Scholar
  35. 35.
    Tan XC, Tian YX, Cai PX, Zou XY (2005) Anal Bioanal Chem 381:500–507Google Scholar
  36. 36.
    Novak BM (1993) Adv Mater 5:422–433Google Scholar
  37. 37.
    Hajji P, David L, Gerard JF, Pascault JP, Vigier G (1999) J Polym Sci Part B Polym Phys 37:3172–3187Google Scholar
  38. 38.
    Mammeri F, Le Bourhis E, Rozes L, Sanchez C (2005) J Mater Chem 15:3787Google Scholar
  39. 39.
    Tjong SC (2006) Mater Sci Eng 53:73–197Google Scholar
  40. 40.
    Cong HL, Radosz M, Towler BF, Shen YQ (2007) Sep Purif Technol 55:281–291Google Scholar
  41. 41.
    Schubert U, Hüsing N, Lorenz A (1995) Chem Mater 7:2010–2027Google Scholar
  42. 42.
    Judeinstein P, Sanchez C (1996) J Mater Chem 6:511–525Google Scholar
  43. 43.
    Wen JY, Wilkes GL (1996) Chem Mater 8:1667–1681Google Scholar
  44. 44.
    Pomogailo AD (2000) Russ Chem Rev 69:53–80Google Scholar
  45. 45.
    Schottner G (2001) Chem Mater 13:3422–3435Google Scholar
  46. 46.
    Caruso F (2001) Adv Mater 13:11–22Google Scholar
  47. 47.
    Caruso RA, Antonietti M (2001) Chem Mater 13:3272–3282Google Scholar
  48. 48.
    Tseng TK, Lin YS, Chen YJ, Chu H (2010) Int J Mol Sci 11:2336–2361Google Scholar
  49. 49.
    Sanchez C, Julian B, Belleville P, Popall M (2005) J Mater Chem 15:3559–3592Google Scholar
  50. 50.
    Sarikaya M, Furlong CE, Staley JT (1994) Am Soc Mech Eng 28:47–48Google Scholar
  51. 51.
    Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, Martin I (2008) Biomaterials 29:3539–3546Google Scholar
  52. 52.
    Maruszewski K, Stręk W, Jasiorski M, Ucyk M (2003) Radiat Eff Defects Solids 158:439–450Google Scholar
  53. 53.
    Wright JD, Sommerdijk NAJM (2001) Sol–gel materials chemistry and applications. Taylor & Francis Group, London, p 8Google Scholar
  54. 54.
    Brinker C, Schere GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, LondonGoogle Scholar
  55. 55.
    Böttcher H, Slowik P, Suss W (1998) J Sol-Gel Sci Technol 13:277–281Google Scholar
  56. 56.
    Jokinen M, Györvary E, Rosenholm JB (1998) Colloid Surf A Physicochem Eng Asp 141:205–216Google Scholar
  57. 57.
    Peltola M, Suonpää J, Aitasalo K, Varpula M, Yli-Urpo RA, Happonen P (1998) Head Neck 20:315–318Google Scholar
  58. 58.
    Falaize S, Radin S, Ducheyne P (1999) J Am Ceram Soc 82:969–976Google Scholar
  59. 59.
    Ahola M, Säilynoja E, Raitavuo M, Vaahtio M, Salonen J, Yli-Urpo A (2001) Biomaterials 22:2163–2170Google Scholar
  60. 60.
    Oliver C (1994) Preparation of colloidal gold. Methods Mol Biol (Clifton, NJ) 34:299–302Google Scholar
  61. 61.
    Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S (2007) J Am Chem Soc 129:2607–2614Google Scholar
  62. 62.
    Im D, Ham YN, Kim H, Lee J, Doo SG (2006) ACS National Meeting Book of Abstracts 231Google Scholar
  63. 63.
    Zhang Y, Ren H-B, Xu J-J, Du K, Zhang L, Xiu P (2006) Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams 18:1841–1844Google Scholar
  64. 64.
    Lee YH, Oh JG, Oh HS, Kim H (2008) Electrochem Commun 10:1035–1037Google Scholar
  65. 65.
    Filler R (1954) J Org Chem 19:544–547Google Scholar
  66. 66.
    Soukoulis C, Chandrinos I, Tzia C (2008) LWT Food Sci Technol 41:1816–1827Google Scholar
  67. 67.
    Liao HT, Wu CS (2008) J Appl Polym Sci 108:2280–2289Google Scholar
  68. 68.
    Zhao XP, Duan X (2002) J Colloid Interface Sci 251:376–380Google Scholar
  69. 69.
    Su C, Wu G, Qiao J, Jiang L (2007) Key Eng Mater 353–358:1471–1474Google Scholar
  70. 70.
    Tang DY, Qiao YJ, Zhang YF (2007) In: Proceedings of SPIE—the international society for optical engineering 6423, art. No. 64234DGoogle Scholar
  71. 71.
    Sepahvand R, Adeli M, Astinchap B, Kabiri R (2008) J Nanoparticle Res 10:1309–1318Google Scholar
  72. 72.
    Eksik O, Erciyes AT, Yagci Y (2008) J Macromol Sci Part A Pure Appl Chem 45:698–704Google Scholar
  73. 73.
    Vargo TG, Koloski TS, MacRae DM, Lucey DW, Zhan D, Brupbacher JB (2006) In: NSTI nanotechnology conference and trade show—NSTI nanotech 2006 technical proceedings, vol 2, pp 772–777Google Scholar
  74. 74.
    Menner A, Salgueiro M, Shaffer MSP, Bismarck A (2008) J Polym Sci Part A Polym Chem 46:5708–5714Google Scholar
  75. 75.
    Lu X, Wen Z, Li J (2006) Biomaterials 27:5740–5747Google Scholar
  76. 76.
    Li Q, Xue Q, Zheng Q, Hao L, Gao X (2008) Mater Lett 62:4229–4231Google Scholar
  77. 77.
    Slobodian P, Pavlínek V, Lengálová A, Sáha P (2009) Curr Appl Phys 9:184–188Google Scholar
  78. 78.
    Xu D, Wang Z (2008) Polymer 49:330–338Google Scholar
  79. 79.
    Pramanik M, Srivastava SK, Samantaray BK, Bhowmick AK (2001) J Mater Sci Lett 20:1377–1380Google Scholar
  80. 80.
    Chen B, Liu S, Evans JRG (2008) J Appl Polym Sci 109:1480–1483Google Scholar
  81. 81.
    Schmidt H (2006) Soft Mater 4:143–164Google Scholar
  82. 82.
    Huang HH, Orler B, Wilkes GL (1985) Polym Bull 14:557Google Scholar
  83. 83.
    Schmidt H (1985) J Non-Cryst Solids 73:681Google Scholar
  84. 84.
    Chen Y, Iroh JO (1999) Chem Mater 11:1218Google Scholar
  85. 85.
    Chao MC, Lin HP (2004) Chem Lett 33:672–673Google Scholar
  86. 86.
    Klemperer WG, Mainz VV, Brinker CJ, Clark D, Ulrich DR (1988) In: Better ceramics through chemistry III, vol 121. Materials Research Society, Pittsburgh, p 15Google Scholar
  87. 87.
    Bryans TR, Brawner VL, Quitevis EL (2000) J Sol-Gel Sci Technol 17:211–217Google Scholar
  88. 88.
    Payne JT, Mauritz KA (1996) Am Chem Soc Poly Prepr Div Polym Chem 37:520–521Google Scholar
  89. 89.
    Reale E, Leyva A, Corma A, Martínez C, García H, Rey F (2005) J Mater Chem 15:1742–1754Google Scholar
  90. 90.
    Aleman J, Chadwick AV, He J, Hess M, Horie K, Jones RG, Kratochvil P, Meisel I, Mitas I, Moad G, Penczek S, Stepto RFT (2007) Pure Appl Chem 79:1801–1829Google Scholar
  91. 91.
    Kachynski AV, Kuzmin AN, Nyk M, Roy I, Prasad PN (2008) J Phys Chem C 112:10721–10724Google Scholar
  92. 92.
    Guskos N, Typek J, Bodziony T, Zolnierkiewicz G, Maryniak M, Biedunkiewicz A (2009) J Alloys Compd 470:51–54Google Scholar
  93. 93.
    Wang J, Pamidi PVA, Jiang M (1998) Anal Chim Acta 360:171–178Google Scholar
  94. 94.
    Sanchez C, Ribot F, Lebeau B (1999) J Mater Chem 9:35–44Google Scholar
  95. 95.
    Shen Y, Mackey G, Rupcich N, Gloster D, Chiuman W, Li Y, Brennan JD (2007) Anal Chem 79:3494–3503Google Scholar
  96. 96.
    Yoshinaga K (2002) Bull Chem Soc Jpn 75:2349–2358Google Scholar
  97. 97.
    Maruszewski K (2005) In: 5th International conference on polymers and adhesives in microelectronics and photonics—proceedings, art. No. 1596509, pp 164–165Google Scholar
  98. 98.
    Matějka L, Dukh O, Drahomíra H, Brus J, Simonsick WJ Jr (2000) Polym Prepr Div Polym Chem 41:502Google Scholar
  99. 99.
    Zhu G, Yang Q, Zhong H, Jiang D, Li C (2007) J Phys Chem B 111:8027–8033Google Scholar
  100. 100.
    Li YH, Zhang WJ, Zhang WN, Yang XY, Ren M, Zhu GY (2007) Cailiao Kexue yu Gongyi/Material Science and Technology 15:358–365Google Scholar
  101. 101.
    Williams DE, Kabra PM (1990) Anal Chem 62:807–810Google Scholar
  102. 102.
    Yano S, Nakamura K, Kodomari M, Yamauchi N (1994) J Appl Polym Sci 54:163–176Google Scholar
  103. 103.
    Kaddami H, Gerard JF, Pascault JP (1999) In: Materials research society symposium—proceedings, vol 576, pp 51–61Google Scholar
  104. 104.
    Jia J, Tang M, Chen X, Qi L, Dong S (2003) Biosens Bioelectron 18:1023–1029Google Scholar
  105. 105.
    Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas JC, Mauri AN, Nonami H, Riccardi CC, Williams RJJ (2000) Macromolecules 33:1940–1947Google Scholar
  106. 106.
    Donescu D, Serban S, Gosa K, Petcu C (2005) Central Eur J Chem 3:10–27Google Scholar
  107. 107.
    Kaddami H, Gerard JF, Pascault JP (1999) Materials research society symposium—proceedings, vol 576, pp 51–61Google Scholar
  108. 108.
    Kokado K, Chujo Y (2008) Chem Lett 37:732–733Google Scholar
  109. 109.
    Ahmad Z, Mark JE (2001) Chem Mater 13:3320–3330Google Scholar
  110. 110.
    Ispas C, Sokolov I, Andreescu S (2009) Anal Bioanal Chem 393:543–554Google Scholar
  111. 111.
    Ren TZ, Yuan ZY, Su BL (2007) Colloid Surf A Physicochem Eng Aspects 300:79–87Google Scholar
  112. 112.
    Qiu FX, Zhou YM, Liu JZ, Zhang XP (2007) Cailiao Kexue yu Gongyi/Material Science and Technology 15:137–140Google Scholar
  113. 113.
    Lee RH, Hsiue GH, Jeng RJ (1999) J Polym Sci Part A Polym Chem 37:2503–2510Google Scholar
  114. 114.
    Crossley MJ, Johnston LA (2002) Chem Commun 10:1122–1123Google Scholar
  115. 115.
    Kotoky T, Dolui SK (2006) Colloid Polym Sci 284:1163–1169Google Scholar
  116. 116.
    Poompradub S, Chaichua B, Kanchanaamporn C, Boosalee T, Prasassarakich P (2008) KGK Kautschuk Gummi Kunststoffe 61:152–155Google Scholar
  117. 117.
    Miyake J, Chujo Y (2006) Polym Prepr Jpn 55:2898Google Scholar
  118. 118.
    Xiong M, Zhang K, Chen Y (2008) Eur Polym J 44:3835–3841Google Scholar
  119. 119.
    Dervaux B, Van Camp W, Van Renterghem L, Du Prez FE (2008) J Polym Sci Part A Polym Chem 46:1649–1661Google Scholar
  120. 120.
    Vidts KRM, Du Prez FE (2006) Eur Polym J 42:43–50Google Scholar
  121. 121.
    Lukens WW, Stucky GD (2002) Chem Mater 14:1665–1670Google Scholar
  122. 122.
    Díaz I, García B, Alonso B, Casado CM, Morán M, Losada J, Pérez-Pariente J (2003) Chem Mater 15:1073–1079Google Scholar
  123. 123.
    Muniz-Miranda M, Ottaviani MF (2004) Laser Phys 14:1533–1538Google Scholar
  124. 124.
    Chiang CL, Ma CCM (2004) Polym Degrad Stab 83:207–214Google Scholar
  125. 125.
    Cheng F (2008) Chem Mater 20:667–681Google Scholar
  126. 126.
    Zakhidov AA, Baughman RH, Iqbal Z, Cui C, Khayrullin I, Dantas SO, Marti J, Ralchenko VG (1998) Science 282:897–901Google Scholar
  127. 127.
    Schneider JJ, Engstler J (2006) Eur J Inorg Chem 1723Google Scholar
  128. 128.
    Sun Y, Tao Z, Chen J, Herricks T, Xia Y (2004) J Am Chem Soc 126:5940Google Scholar
  129. 129.
    Chen J, Tao Z, Li S (2004) J Am Chem Soc 126:3060Google Scholar
  130. 130.
    Chen J, Xu L, Li W, Gou X (2005) Adv Mater 17:582Google Scholar
  131. 131.
    Li WY, Xu LN, Chen J (2005) Adv Funct Mater 15:851Google Scholar
  132. 132.
    Cai FS, Zhang GY, Chen J, Gou XL, Liu HK, Dou SX (2004) Angew Chem Int Ed 43:4212Google Scholar
  133. 133.
    Cheng FY, Chen J, Shen PW (2005) J Power Sources 150:255Google Scholar
  134. 134.
    Li W, Zhang S, Chen J (2005) J Phys Chem B 109:14025Google Scholar
  135. 135.
    Li X, Cheng F, Guo B, Chen J (2005) J Phys Chem B 109:14017Google Scholar
  136. 136.
    Zhang G, Li C, Cheng F, Chen J (2007) Sens Actuators B 120:403Google Scholar
  137. 137.
    Gin DL, Gu W, Pindzola BA, Zhou WJ (2001) Acc Chem Res 34:973Google Scholar
  138. 138.
    Gou X, Cheng F, Shi Y, Zhang L, Peng S, Chen J, Shen P (2006) J Am Chem Soc 128:7222Google Scholar
  139. 139.
    Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Science 312:885Google Scholar
  140. 140.
    Polarz S, Antonietti M (2002) Chem Commun 2593Google Scholar
  141. 141.
    Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen CJH (2001) Chem Mater 13:4416–4418Google Scholar
  142. 142.
    Tosheva L, Parmentier J, Valtchev V, Vix-Guterl C, Patarin J (2005) Carbon 43:2474–2480Google Scholar
  143. 143.
    Tosheva L, Parmentier J, Saadallah S, Vix-Guterl C, Valtchev V, Patarin J (2004) J Am Chem Soc 126:13624–13625Google Scholar
  144. 144.
    Holland BT, Blanford CF, Stein A (1998) Science 281:538–540Google Scholar
  145. 145.
    Holland BT, Blanford CF, Do T, Stein A (1999) Chem Mater 11:795–805Google Scholar
  146. 146.
    Mayoral R, Requena J, Moya JS, Lopez C, Cintas A, Miguez H, Meseguer F, Vazquez L, Holgdo M, Blanco A (1997) Adv Mater 9:257–260Google Scholar
  147. 147.
    Park SH, Qin D, Xia Y (1998) Adv Mater 10:1028–1032Google Scholar
  148. 148.
    Johnson SA, Olliver PJ, Mallouk TE (1999) Science 283:963–965Google Scholar
  149. 149.
    Antonietti M, Berton B, Goltner C, Hentze HP (1998) Adv Mater 10:154–159Google Scholar
  150. 150.
    Imhof A, Pine DJ (1997) Nature 389:948–951Google Scholar
  151. 151.
    Valtchev VP, Smaihi M, Faust AC, Vidal L (2004) Chem Mater 16:1350–1355Google Scholar
  152. 152.
    Valtchev V, Smaihi M, Faust AC, Vidal L (2004) Stud Surf Sci Catal 154:588–592Google Scholar
  153. 153.
    Valtchev V, Smaihi M, Faust AC, Vidal L (2003) Angew Chem Int Ed 42:2782–2785Google Scholar
  154. 154.
    Domae M, Saito R (2005) Polym Prepr Jpn 54:1119Google Scholar
  155. 155.
    Shchipunov YA, Karpenko TYu, Bakunina IYu, Burtseva YV, Zvyagintseva TN (2004) J Biochem Biophys Methods 58:25–38Google Scholar
  156. 156.
    Cauqui MA, Rodriquez-Izquierdo JM (1992) Application of the sol–gel methods to catalyst preparation. J Non-Cryst Solids 147:724–738Google Scholar
  157. 157.
    Coles MP, Lugmair CG, Terry KW, Tilley TD (2000) Chem Mater 12:122–131Google Scholar
  158. 158.
    Sault AG, Martino A, Kawola JS, Boespflug E (2000) J Catal 191:474–479Google Scholar
  159. 159.
    de Morais TD, Chaput F, Lahlil K, Boilot JP (1999) Adv Mater 11:107–112Google Scholar
  160. 160.
    Gebauer T, Schmid G (1999) Zeitschrift für anorganische und allgemeine Chemie 625:1124–1128Google Scholar
  161. 161.
    Seddon A (1998) In: IEE proceedings. Circuits, devices, and systems, vol 145, p 369Google Scholar
  162. 162.
    Agranovich VM, Basko DM, LaRocca GC, Bassani F (1998) J Phys Condens Matter 10:9369–9400Google Scholar
  163. 163.
    Unger K, Rupprecht H, Valentin B, Kircher W (1983) Drug Dev Ind Pharmacy 9:69–91Google Scholar
  164. 164.
    Langer R (1998) Nature 392:5–10Google Scholar
  165. 165.
    Klein CPAT, Li P, Blieck-hogervorst JMA, de Groot K (1995) Biomaterials 16:715–719Google Scholar
  166. 166.
    Wilson J, Douek E, Rust K (1995) In: Wilson J, Hench L, Greenspan D (eds) Bioceramics, vol 8. Proceeding of the 8th international symposium on ceramics in medicine. Alden Press, Oxford, pp 239–245Google Scholar
  167. 167.
    Suominen E, Kinnunen J (1996) Scand J Plast Reconstr Surg Hand Sur 30:281–289Google Scholar
  168. 168.
    Stoor P, Söderling E, Grenman R (1999) J Biomed Mater Res 48:869–874Google Scholar
  169. 169.
    Klem MT, Young M, Douglas T (2005) Mater Today (Oxford UK) 8:28–37Google Scholar
  170. 170.
    Reiss G, Huetten A (2005) Nat Mater 4:725–726Google Scholar
  171. 171.
    Dobson J (2006) Nanomedicine 1:31–37Google Scholar
  172. 172.
    Gu H, Xu K, Xu C, Xu B (2006) Chem Commun 9:941–949Google Scholar
  173. 173.
    Lin X-M, Samia ACS (2006) J Magn Magn Mater 305:100–109Google Scholar
  174. 174.
    Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Prog Solid State Chem 34:237–247Google Scholar
  175. 175.
    Sun S (2006) Adv Mater 18:393–403Google Scholar
  176. 176.
    Vatta LL, Sanderson RD, Koch KR (2006) Pure Appl Chem 78:1793–1801Google Scholar
  177. 177.
    Leslie-Pelecky DL, Rieke RD (1996) Chem Mater 8:1770–1783Google Scholar
  178. 178.
    Bibette J (1993) J Magn Magn Mater 122:37–41Google Scholar
  179. 179.
    Liu J, Lawrence EM, Wu A, Ivey ML, Flores GA, Javier K, Bibette J, Richard J (1995) Phys Rev Lett 74:2828–2831Google Scholar
  180. 180.
    Promislow JHE, Gast AP (1996) Langmuir 12:4095–4102Google Scholar
  181. 181.
    Furst EM, Suzuki C, Fermigier M, Gast AP (1998) Langmuir 14:7334–7336Google Scholar
  182. 182.
    Caruso F, Susha AS, Giersig M, Mohwald H (1999) Adv Mater 11:950–953Google Scholar
  183. 183.
    Furst EM, Gast AP (1999) Phys Rev Lett 82:4130–4133Google Scholar
  184. 184.
    Tannenbaum R, Flenniken CL, Goldberg EP (1987) J Polym Sci Part B Polym Phys 25:1341–1358Google Scholar
  185. 185.
    Tannenbaum R, Flenniken CL, Goldberg EP (1990) J Polym Sci Part B Polym Phys 28:2421–2433Google Scholar
  186. 186.
    Tannenbaum R (1994) Inorg Chim Acta 227:233–240Google Scholar
  187. 187.
    Sohn BH, Cohen RE (1997) Chemistry of Materials 9:264–269Google Scholar
  188. 188.
    Tannenbaum R (1997) Langmuir 13:5056–5060Google Scholar
  189. 189.
    Tadd EH, Bradley J, Tannenbaum R (2002) Langmuir 18:2378–2384Google Scholar
  190. 190.
    Rutnakornpituk M, Thompson MS, Harris LA, Farmer KE, Esker AR, Riffle JS, St. Connolly J, Pierre TG (2002) Polymer 43:2337–2348Google Scholar
  191. 191.
    St. Connolly J, Pierre TG, Rutnakornpituk M, Riffle JS (2004) J Phys D Appl Phys 37:2475–2482Google Scholar
  192. 192.
    Vadala ML, Rutnakornpituk M, Zalich MA, St. Pierre TG, Riffle JS (2004) Polymer 45:7449–7461Google Scholar
  193. 193.
    Baranauskas VV, Zalich MA, Saunders M, Pierre TG, Riffle JS (2005) Chem Mater 17:5246–5254Google Scholar
  194. 194.
    Zalich MA, Baranauskas VV, Riffle JS, St. Saunders M, Pierre TG (2006) Chem Mater 18:2648–2655Google Scholar
  195. 195.
    Takahashi K, Tamaura Y, Kodera Y, Mihama T, Saito Y, Inada Y (1987) Biochem Biophys Res Comm 142:291–296Google Scholar
  196. 196.
    Gao Y, Choudhury NR (2003) In: Nalwa HS (ed) Handbook of organic-inorganic hybrid materials and nanocomposites. American Scientific Publishers, Stevenson Ranch, vol 1, pp 271–293Google Scholar
  197. 197.
    Shang XY, Zhu ZK, Yin J, Ma XD (2002) Chem Mater 14:71–77Google Scholar
  198. 198.
    Huang SL, Chin WK, Yang WP (2005) Polymer 46:1865–1877Google Scholar
  199. 199.
    Bandyopadhyay A, De Sarkar M, Bhowmick AK (2005) J Mater Sci 40:5233–5241Google Scholar
  200. 200.
    Jang J, Park H (2002) J Appl Polym Sci 83:1817–1823Google Scholar
  201. 201.
    Lai SM, Wang CK, Shen HF (2005) J Appl Polym Sci 97:1316–1325Google Scholar
  202. 202.
    Hsu YG, Chiang IL, Lo JF (2000) J Appl Polym Sci 78:1179–1190Google Scholar
  203. 203.
    Kickelbick G (2007) In: Kickelbick G (ed) Hybrid materials. Synthesis, characterization, and applications. Wiley-VCH, Weinheim, Chap 1Google Scholar
  204. 204.
    Gao Y, Choudhury NR, Dutta N, Matisons J, Reading M, Delmotte L (2001) Chem Mater 13:3644–3652Google Scholar
  205. 205.
    Jain S, Goossens H, van Duin M, Lemstra P (2005) Polymer 46:8805–8818Google Scholar
  206. 206.
    Petrovic ZS, Javni I, Waddon A, Bánhegyi G (2000) J Appl Polym Sci 76:133–151Google Scholar
  207. 207.
    Oberdisse J, Hine P, Pyckhout-Hintzen W (2007) Soft Matter 3:476–485Google Scholar
  208. 208.
    Oberdisse J, Deme B (2002) Macromolecules 35:4397–4405Google Scholar
  209. 209.
    Berriot J, Montes H, Martin F, Mauger M, Pyckhout-Hintzen W, Meier G, Frielinghaus H (2003) Polymer 44:4909–4919Google Scholar
  210. 210.
    El Harrak A, Carrot G, Oberdisse J, Jestin J, Boué F (2005) Polymer 46:1095–1104Google Scholar
  211. 211.
    Winberg P, De Sitter K, Dotremont C, Mullens S, Vankelecom IFJ, Maurer FHJ (2005) Macromolecules 38:3776–3782Google Scholar
  212. 212.
    Lee NG, Amy JP, Croue HB (2005) J Membr Sci 261:7–16Google Scholar
  213. 213.
    Amalvy JI, Percy MJ, Armes SP, Leite CAP, Galembeck F (2005) Langmuir 21:1175–1179Google Scholar
  214. 214.
    Becker C, Kutsch B, Krug H, Kaddami H (1998) J Sol-Gel Sci Technol 13:499–502Google Scholar
  215. 215.
    Zhang MQ, Rong MZ, Zeng HM, Schmitt S, Wetzel B, Friedrich K (2001) J Appl Polym Sci 80:2218–2227Google Scholar
  216. 216.
    Percy MJ, Michailidou V, Armes SP, Perruchot C, Watts JF, Greaves SJ (2003) Langmuir 19:2072–2079Google Scholar
  217. 217.
    Percy MJ, Amalvy JI, Barthet C, Armes SP, Greaves SJ, Watts JF, Wiese H (2002) J Mater Chem 12:697–702Google Scholar
  218. 218.
    Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR (2003) J Appl Polym Sci 89:2072–2078Google Scholar
  219. 219.
    Liu YL, Hsu CY, Hsu KY (2005) Polymer 46:1851–1856Google Scholar
  220. 220.
    Tiwari A, Mishra AP, Dhakate SR, Khan R, Shukla SK (2007) Mater Lett 61:4587–4590Google Scholar
  221. 221.
    Rashidova SS, Shakarova DS, Ruzimuradov ON, Satubaldieva DT, Zalyalieva SV, Shpigun OA, Varlamov VP, Kabulov BD (2004) J Chromatogr B Anal Technol Biomed Life Sci 800:49–55Google Scholar
  222. 222.
    Retuert J, Quijada R, Arias V, Yazdani-Pedram M (2003) J Mater Res 18:487–494Google Scholar
  223. 223.
    Kato M, Saruwatari H, Sakai-Kato K, Toyo’oka T (2004) J Chromatogr A 1044:267–270Google Scholar
  224. 224.
    Kabulov BD, Akhundzhanov KA, Yunusov FU, Shpigun OA, Negmatov SS (2007) Russ J Phys Chem 81:354–356Google Scholar
  225. 225.
    Wang GH, Zhang LM (2006) J Phys Chem B 110:24864Google Scholar
  226. 226.
    Watzke HJ, Dieschbourg C (1994) Adv Colloid Interface Sci 50:1–14Google Scholar
  227. 227.
    Li F, Li XM, Zhang SS (2006) J Chromatogr A 1129:223–230Google Scholar
  228. 228.
    Li F, Du P, Chen W, Zhang S (2007) Anal Chim Acta 585:211–218Google Scholar
  229. 229.
    Kang X, Mai Z, Zou X, Cai P, Mo J (2008) Talanta 74:879–886Google Scholar
  230. 230.
    Miao Y, Tan SN (2001) Anal Chim Acta 437:87–93Google Scholar
  231. 231.
    Reis EM, Vasconcelos WL, Mansur HS, Pereira MM (2008) Key Eng Mat 361–363:967–970Google Scholar
  232. 232.
    Fei B, Lu H, Xin JH (2006) Polymer 47:947–950Google Scholar
  233. 233.
    Leng B, Chen X, Shao Z, Ming W (2008) Small 4:755–758Google Scholar
  234. 234.
    Airoldi C, Monteiro OAC Jr (2000) J Appl Polym Sci 77:797–804Google Scholar
  235. 235.
    Tamaki R, Chujo Y (1999) Compos Interfaces 6:259–272Google Scholar
  236. 236.
    Zhu AP, Zhang Z, Shen J (2003) J Mater Sci Mater Med 14:27–31Google Scholar
  237. 237.
    Xu Q, Mao C, Liu NN, Zhu JJ, Sheng J (2006) Biosens Bioelectron 22:768–773Google Scholar
  238. 238.
    Hoffman AS (2002) Adv Drug Deliv Rev 43:3–12Google Scholar
  239. 239.
    Nayak S, Lyon LA (2005) Angew Chem Int Ed 44:7686–7708Google Scholar
  240. 240.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Adv Mater 18:1345–1360Google Scholar
  241. 241.
    Kabanov AV, Vinogradov SV (2009) Angew Chem Int Ed 48:5418–5429Google Scholar
  242. 242.
    Sanson N, Rieger J (2010) Polym Chem 1:965–977Google Scholar
  243. 243.
    Motornov M, Roiter Y, Tokarev I, Minko S (2010) Prog Polym Sci 35:174–211Google Scholar
  244. 244.
    Wu W, Shen J, Banerjee P, Zhou SQ (2010) Biomaterials 31:8371–8381Google Scholar
  245. 245.
    Matsumura Y, Maeda H (1986) Cancer Res 46:6387–6392Google Scholar
  246. 246.
    Hiller J, Mendelsohn J, Rubner MF (2002) Nat Mater 1:59–63Google Scholar
  247. 247.
    Picart C, Mutterer J, Richert L, Luo Y, Prestwich GD, Schaaf P et al (2002) Proc Natl Acad Sci USA 99:12531–12535Google Scholar
  248. 248.
    Sui ZJ, Schlenoff JB (2004) Langmuir 20:6026–6031Google Scholar
  249. 249.
    Kharlampieva E, Ankner JF, Rubinstein M, Sukhishvili SA (2008) Phys Rev Lett 100:128303Google Scholar
  250. 250.
    Shchipunov YA, Karpenko TY, Krekoten AV, Postnova IV (2005) J Colloid Interface Sci 287:373–378Google Scholar
  251. 251.
    Shirosaki Y, Tsuru K, Hayakawa S et al (2005) Biomaterials 26:485–493Google Scholar
  252. 252.
    Schwarz K (1973) Proc Natl Acad Sci U S A 70:1608–1612Google Scholar
  253. 253.
    Hermann E, Dorte J, Paul S, Vasily VB, Nikolay PS, Christiane E, Michael M, René B, Sascha H, Thomas H, Hartmut W, John NV (2008) J Nanomater 670235:8Google Scholar
  254. 254.
    Darder M, Colilla M, Ruiz-Hitzky E (2003) Chem Mater 15:3774–3780Google Scholar
  255. 255.
    Ray SS, Bousmina M (2005) Prog Mater Sci 50:962–1079Google Scholar
  256. 256.
    Wang SF, Shen L, Tong YJ (2005) Polym Degrad Stab 90:123–131Google Scholar
  257. 257.
    Samuneva B, Kabaivanova L, Chernev G, Djambaski P, Kashchieva E, Emanuilova E, Miranda Salvado IM, Wu A (2008) J Sol-Gel Sci Technol 1–7Google Scholar
  258. 258.
    Shchipunov YA (2003) J Colloid Interface Sci 268:68–76Google Scholar
  259. 259.
    Boissière M, Tourrette A, Devoisselle JM, Di Renzo F, Quignard F (2006) J Colloid Interface Sci 294:109–116Google Scholar
  260. 260.
    Jiang Y, Jiang YJ, Zhang YF, Li J, Zhang L, Jiang ZY (2007) J Biomater Sci Polym Ed 18:1517–1526Google Scholar
  261. 261.
    Xu S-W, Lu Y, Li J, Jiang Z-Y, Wu H (2006) Ind Eng Chem Res 45:4567–4573Google Scholar
  262. 262.
    Ma L, Wen J, Lu W, Caiyin Q, Liang Y (2008) Enzyme Microbial Tech 42:235–241Google Scholar
  263. 263.
    Lu Y, Jiang ZY, Xu SW, Wu H (2006) Catal Today 115:263–268Google Scholar
  264. 264.
    Coradin T, Livage J (2003) J Sol-Gel Sci Technol 26:1165–1168Google Scholar
  265. 265.
    Pinto RJB, Marques PAAP, Barros-Timmons AM, Trindade T, Neto CP (2008) Compos Sci Technol 68:1088–1093Google Scholar
  266. 266.
    Mo Z, Zhao Z, Chen H, Niu G (2008) Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica 25:24–28Google Scholar
  267. 267.
    Miyake J, Chujo Y (2006) Polym Prepr 55:2898Google Scholar
  268. 268.
    Sequeira S, Evtuguin DV, Portugal I (2007) ACS Symp Ser 954:121–136Google Scholar
  269. 269.
    Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) J Mater Sci 41:5646–5656Google Scholar
  270. 270.
    Barud HS, Assunção RMN, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2008) J Sol-Gel Sci Technol 46:363–367Google Scholar
  271. 271.
    Yano S (1994) Polymer 35:5565–5570Google Scholar
  272. 272.
    Wojciechowski P, Halamus T, Pietsch U (2006) Mater Sci Poland 24:507–516Google Scholar
  273. 273.
    Yano S, Kodomari M (1996) Nihon Reoroji Gakkaishi 24:15–20Google Scholar
  274. 274.
    Tanaka K, Kozuka H (2005) J Mater Sci 40:5199–5206Google Scholar
  275. 275.
    Shojaie SS, Rials TG, Kelley SS (1995) J Appl Polym Sci 58:1263–1274Google Scholar
  276. 276.
    Zoppi RA, Gonçalves MC (2002) J Appl Polym Sci 84:2196–2205Google Scholar
  277. 277.
    Yamaki S, Maeda H, Hagiwara T, Sawaguchi T, Yano S, Mizoguchi K (2005) Polym Prepr Jpn 54:3606Google Scholar
  278. 278.
    Shchipunov YuA, Kojima A, Imae T (2005) J Colloid Interface Sci 285:574–580Google Scholar
  279. 279.
    Bakunina IYu, Nedashkovskaya OI, Zvyagintseva TN, Shchipunov YuA (2006) Russ J Appl Chem 79:827–832Google Scholar
  280. 280.
    Shchipunov YuA, Burtseva YuV, Karpenko TYu, Shevchenko NM, Zvyagintseva TN (2006) J Mol Catal B Enzym 40:16–23Google Scholar
  281. 281.
    Shchipunov YA, Karpenko TYu (2004) Langmuir 20:3882–3887Google Scholar
  282. 282.
    Shchipunov YA, Karpenko TYu, Krekoten AV (2005) Compos Interfaces 11:587–607Google Scholar
  283. 283.
    Shchipunov Y, Shipunova N (2008) Colloids Surf B Biointerface 63:7–11Google Scholar
  284. 284.
    Gautier C, Abdoul-Aribi N, Roux C, Lopez PJ, Livage J, Coradin T (2008) Colloids Surf B Biointerfaces 65:140–145Google Scholar
  285. 285.
    Whistler RL (1969) The encyclopaedia of polymer science and technology, vol 11. Wiley, New York, p 416Google Scholar
  286. 286.
    Bajpai UDN, Jain A, Bajpai AK (1990) Acta Polymerica 41:577–581Google Scholar
  287. 287.
    Deshmukh SR, Chaturvedi PN, Singh RP (1985) J Appl Polym Sci 30:4013–4018Google Scholar
  288. 288.
    Singh V, Tiwari A, Tripathi DN, Sanghi R (2004) J Appl Polym Sci 92:1569–1575Google Scholar
  289. 289.
    Singh V, Tiwari A, Shukla P, Singh SP, Sanghi R (2006) React Funct Polym 66:1306–1318Google Scholar
  290. 290.
    Singh V, Tiwari A, Tripathi DN, Sanghi R (2004) Carbohydr Polym 58:1–6Google Scholar
  291. 291.
    Singh V, Tiwari A, Pandey S, Singh SK (2007) J Appl Polym Sci 104:536–544Google Scholar
  292. 292.
    Singh V, Pandey S, Singh SK, Sanghi R (2008) J Sol-Gel Sci Technol 47:58–67Google Scholar
  293. 293.
    Singh V, Pandey S, Singh SK, Sanghi R (2009) Sep Purif Technol 67:251–261Google Scholar
  294. 294.
    Singh V, Pandey S, Singh SK, Kumar P (2011) J Non-Cryst Solids 357:194–201Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical TechnologyUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations