Journal of Sol-Gel Science and Technology

, Volume 58, Issue 3, pp 705–710 | Cite as

Photocatalytic property of surface-modified TiO2 nanobelts under visible light irradiation

  • Enhua Wang
  • Suwen Liu
  • Qifang Lu
  • Zhiliang Xiu
  • Tanggang Li
  • Lingjun Song
Original paper


A novel plasmonic photocatalyst, i.e., acid-etched TiO2 nanobelts attached with Ag/AgI nanoparticles (NPs) was prepared by deposition–precipitation-photoreduction method. Such surface-modified nanobelts had larger area than the normal one. Ag NPs were formed from AgI by photo-reduction under Xenon lamp irradiation. X-ray diffraction, scanning electron microscopy analysis, UV–Vis diffuse reflectance spectra and fluorescence spectra were used to characterize the structure and optical properties of the sample. The obtained sample exhibited strong photodegradation of methyl orange (MO) under visible light irradiation, which were attributed to both the surface plasmon resonance of Ag NPs and the visible light actived AgI. The photodegradation was accomplished by the transfer of photoexcited electrons from the Ag NPs to the acid-etched TiO2 nanobelts. After four cycles of photodegradation the photocatalyst was still stable. This novel photocatalyst had a high potential application in wastewater-treatment and biomedical engineering.


Acid-etched TiO2 nanobelts Surface plasmon resonance Ag/AgI Photodegradation 



This work was supported by the National Natural Science Foundation of China (Grant No. 50872076), the Open Research Fund Program of State Key Laboratory of Crystal materials (Grant No. KF0905), and the Ministry of Education of Shandong Province (Grant No. J09LD23). The authors also thank the Analytical Center of Shandong Institute of Light Industry for the technological support.


  1. 1.
    Cheng B, Le Y, Yu JG (2010) J Hazard Mater 177:971–977CrossRefGoogle Scholar
  2. 2.
    Ksibi M, Rossignol S, Tatibouet JM, Trapalis C (2008) Mater Lett 62:4204–4206CrossRefGoogle Scholar
  3. 3.
    Li C, Wang C, Li Q, Yang S, Hou L, Chen S (2009) J Mater Sci 44:3413CrossRefGoogle Scholar
  4. 4.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271dCrossRefGoogle Scholar
  5. 5.
    Halasi G, Kecskemeti A, Solymosi F (2010) Catal Lett 135:17CrossRefGoogle Scholar
  6. 6.
    Fessenden RW, Kamat PV (1995) J Phys Chem 99:12902–12906CrossRefGoogle Scholar
  7. 7.
    Armstrong G, Armstrong AR, Canales J, Bruce PG (2005) Chem Commun 24:54Google Scholar
  8. 8.
    Wang P, Huang BB, Qin XY, Zhang XY, Dai Y, Wei JY, Whangbo MH (2008) Angew Chem Int Ed 47:7931–7933CrossRefGoogle Scholar
  9. 9.
    Schwartzberg AM, Zhang JZ (2008) J Phy Chem C 112:10323–10337CrossRefGoogle Scholar
  10. 10.
    Koichi A, Makoto F, Carsten R, Junji T, Hirotaka M, Yoshimichi O, Naoya Y, Toshiya W (2008) J Am Chem Soc 130:1676–1680CrossRefGoogle Scholar
  11. 11.
    Choi M, Shin KH, Jang J (2010) J Colloid Interface Sci 341:85CrossRefGoogle Scholar
  12. 12.
    Zhou XF, Hu C, Hu XX, Peng TW, Qu JH (2010) J Phys Chem C 114:2746–2750CrossRefGoogle Scholar
  13. 13.
    Hu C, Hu X, Wang L, Qu J, Wang A (2006) Environ Sci Technol 40:7903–7907CrossRefGoogle Scholar
  14. 14.
    Rodrigues S, Uma S, Martyanov IN, Klabunde KJ (2005) J Catal 233:405–410CrossRefGoogle Scholar
  15. 15.
    Zhou WJ, Liu H, Wang JY, Liu D, Du GJ, Cui JJ (2010) Appl Mater Interfaces 2:2385–2392CrossRefGoogle Scholar
  16. 16.
    Plass R, Pelet S, Krueger J, Gratzel M, Bach U (2002) J Phys Chem B 106:7578–7580CrossRefGoogle Scholar
  17. 17.
    Ishibashi K, Fujishima A, Watanabe T (2000) Electrochem Commun 2:207–210CrossRefGoogle Scholar
  18. 18.
    Li FB, Li XZ (2002) Chemosphere 48:1103–1111CrossRefGoogle Scholar
  19. 19.
    Kawahara K, Suzuki K, Ohko Y, Tatsuma T (2005) Phys Chem Chem Phys 7:3851–3855CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Enhua Wang
    • 1
  • Suwen Liu
    • 1
    • 2
  • Qifang Lu
    • 1
  • Zhiliang Xiu
    • 1
  • Tanggang Li
    • 1
  • Lingjun Song
    • 1
  1. 1.Key Laboratory of Glass and CeramicsShandong Polytechnic UniversityJinanRepublic of China
  2. 2.State Key Laboratory of Crystal MaterialShandong UniversityJinanRepublic of China

Personalised recommendations