Journal of Sol-Gel Science and Technology

, Volume 58, Issue 3, pp 651–655 | Cite as

Fabrication of teardrop-shaped silica particles in polyelectrolyte diluted solution through in situ sol–gel process

  • LinYong Song
  • ChunLei Lin
  • Lan Wang
  • HaiLin Sheng
  • YiFeng Zhou
  • WangYan Nie
Original Paper


A new strategy to fabricate teardrop-shaped silica particles is presented. Monodispersed teardrop-like silica particles were obtained through basic catalyzed sol–gel process of tetraethoxysilane by employed sodium polyacrylate as soft template. Increasing the salt concentration of solution, the morphology of silica particles can transform from teardrop-like to hollow structures, and finally formed solid particles. The morphologies of silica particles are characterized by TEM and SEM. Our finding can be scaled up for large-scale synthesis of unusual structures of inorganic or composite materials in a predictable manner. This study is expected to provide further understanding of the role of polyelectrolyte in the synthesis of inorganic materials towards design of unusual architectures and functional materials.


Polyelectrolyte Teardrop-shaped Silica Sol–gel Nanoparticles Viscoelasticity Shearing 



This work was financed by the 211 Project of Anhui University (2009QN007A), Scientific Research Fund of Anhui Provincial Education Department (KJ2009A51) and the Startup Foundation for Doctors of Anhui University. And we thank Dr. Wang Mozhen for the helpful discussion on the formation of anisotropic particles.

Supplementary material

10971_2011_2440_MOESM1_ESM.docx (900 kb)
Supplementary material 1 (DOCX 900 kb)


  1. 1.
    Manna L, Scher EC (2000) J Am Chem Soc 122:12700CrossRefGoogle Scholar
  2. 2.
    Zhao NN, Pan DC, Nie W, Ji XL (2006) J Am Chem Soc 128:10118CrossRefGoogle Scholar
  3. 3.
    Djerdj I, Garnweitner G, Su DS, Niederberger M (2007) J Solid State Chem 180:2154CrossRefGoogle Scholar
  4. 4.
    Kim Y, Hwang H, Yoon CS et al (2007) Adv Mater 19:92CrossRefGoogle Scholar
  5. 5.
    Jana NR (2005) Small 1:875CrossRefGoogle Scholar
  6. 6.
    Quintanilla A, Valvo M, Lafont U et al (2010) Chem Mater 22:1656CrossRefGoogle Scholar
  7. 7.
    Shi WL, Sahoo Y, Zeng H et al (2006) Adv Mater 18:1889CrossRefGoogle Scholar
  8. 8.
    Zeng JT, Kwok KW, Tam WK et al (2006) J Am Cera Soc 89:3850CrossRefGoogle Scholar
  9. 9.
    Xuan SH, Liang FX, Shu KY (2009) J Magn Magn Mater 321:1029CrossRefGoogle Scholar
  10. 10.
    Biswas S, Srivastava VK, Ram S, Fecht HJ (2007) J Phys Chem C 111:7593CrossRefGoogle Scholar
  11. 11.
    Ito F, Uchida Y, Murakami Y (2010) Colloid Surf A-Physicochem Eng Asp 361:109CrossRefGoogle Scholar
  12. 12.
    Si S, Dinda E, Mandal TK (2008) J Nanosci Nanotechnol 8:5934CrossRefGoogle Scholar
  13. 13.
    Hall SR (2009) P Roy Soc A-Math Phy 465:335CrossRefGoogle Scholar
  14. 14.
    Millman JR, Bhatt KH, Prevo BG, Velev OD (2005) Nat Mater 4:98CrossRefGoogle Scholar
  15. 15.
    Rastogi V, Garcia AA, Marquez M, Velev OD (2010) Macromol Rapid Comm 31:190CrossRefGoogle Scholar
  16. 16.
    Duraiswamy S, Khan SA (2009) Small 5:2828CrossRefGoogle Scholar
  17. 17.
    Peng B, Chen M, Zhou S et al (2008) J Colloid Interface Sci 321:67CrossRefGoogle Scholar
  18. 18.
    Hu Y, Nareen M, Humphries A, Christian P (2010) J Sol-Gel Sci Technol 53:300CrossRefGoogle Scholar
  19. 19.
    Wang YS, Hassan MS, Gunawan P et al (2009) J Colloid Interface Sci 339:69CrossRefGoogle Scholar
  20. 20.
    Rouse JH, Ferguson GS (2002) Adv Mater 14:151CrossRefGoogle Scholar
  21. 21.
    Wang DY, Caruso F (2002) Chem Mater 14:1909CrossRefGoogle Scholar
  22. 22.
    Tao C, Li JB (2003) Langmuir 19:10353CrossRefGoogle Scholar
  23. 23.
    Firestone MA, Dietz ML, Seifert S et al (2005) Small 1:754CrossRefGoogle Scholar
  24. 24.
    Yu JG, Li C, Liu SW (2008) J Colloid Interface Sci 326:433CrossRefGoogle Scholar
  25. 25.
    Wang XY, Li YJ, Li JX et al (2005) J Phys Chem B 109:10807CrossRefGoogle Scholar
  26. 26.
    Zhang XJ, Wang YL, Wang W (2009) Langmuir 25:2075CrossRefGoogle Scholar
  27. 27.
    Carrillo JMY, Dobrynin AV (2009) Langmuir 25:13158CrossRefGoogle Scholar
  28. 28.
    Wan Y, Yu SH (2008) J Phys Chem C 112:3641CrossRefGoogle Scholar
  29. 29.
    Zhu YJ, Tan YB, Du X et al (2009) J Dispersion Sci Technol 30:1036CrossRefGoogle Scholar
  30. 30.
    Jeon J, Dobrynin AV (2006) J Phys Chem B 110:24652CrossRefGoogle Scholar
  31. 31.
    Liu WH, Yu TL, Lin HL (2007) Polymer 48:4152CrossRefGoogle Scholar
  32. 32.
    Karayianni M, Mountrichas G, Pispas S (2010) J Phys Chem B 114:10748CrossRefGoogle Scholar
  33. 33.
    Lam VD, Walker LM (2010) Langmuir 26:10489CrossRefGoogle Scholar
  34. 34.
    Sui ZJ, Jaber JA, Schlenoff JB (2006) Macromolecules 39:8145CrossRefGoogle Scholar
  35. 35.
    Wu N, Hubbe M, Rojas O, Park S (2010) Colloid Surf A-Physicochem Eng Asp 364:1CrossRefGoogle Scholar
  36. 36.
    McKenna BJ, Waite JH, Stucky GD (2009) Cryst Growth Des 9:4335CrossRefGoogle Scholar
  37. 37.
    Furuichi K, Oaki Y, Imai H (2006) Chem Mater 18:229CrossRefGoogle Scholar
  38. 38.
    Jada A, Akbour RA, Jacquemet C et al (2007) J Cryst Growth 306:373CrossRefGoogle Scholar
  39. 39.
    Lee GJ, Shin SI, Oh SG (2004) Chem Lett 33:118CrossRefGoogle Scholar
  40. 40.
    Dunleavey-Routh R, Vincent B (2007) J Colloid Interface Sci 309:119CrossRefGoogle Scholar
  41. 41.
    Hong J, Lee J, Rhym YM et al (2010) J Colloid Interface Sci 344:410CrossRefGoogle Scholar
  42. 42.
    Popa I, Cahill B, Maroni P et al (2007) J Colloid Interface Sci 309:28CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • LinYong Song
    • 1
  • ChunLei Lin
    • 1
  • Lan Wang
    • 1
  • HaiLin Sheng
    • 1
  • YiFeng Zhou
    • 1
  • WangYan Nie
    • 1
  1. 1.The Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, College of Chemistry & Chemical EngineeringAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations