Advertisement

Journal of Sol-Gel Science and Technology

, Volume 58, Issue 3, pp 636–641 | Cite as

Metamagnetic DyAlO3 nanoparticles with very low magnetic moment

  • D. Petrov
  • B. Angelov
  • V. Lovchinov
Original Paper

Abstract

Nanocrystalline dysprosium monoaluminate (DyAlO3) has been synthesized by modified sol–gel method after sintering the precursor gel at 950 °C. The micro-structural features have been verified by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy. The XRD pattern confirms the formation of single-phase DyAlO3; the average size of the nanoparticles is 50 nm. X-Ray photoelectron spectroscopy has been used to study the chemical composition and bonding in the samples. The binding energies of core-level electrons in Dy, Al and O in DyAlO3 nanopowder have been found slightly shifted compared to the respective values of the same elements. Both AC and DC magnetic susceptibilities have been measured in the temperature range 2–300 K. Unusually low effective magnetic moment of Dy3+, μeff = 0.38, has been derived from the inverse magnetic susceptibility–temperature plot between 4 and 252 K. The Nèel temperature, TN = 3.920 K and exchange interaction constant J/k = −1.74 K, have been also determined.

Keywords

Dysprosium monoaluminate Malic acid Nanocrystals Sol–gel method Magnetic properties 

Notes

Acknowledgments

The authors would like to thank the University of Food Technologies-Plovdiv for the financial support.

References

  1. 1.
    Mizuno M, Yamada T, Noguchi T (1977) J Ceram Soc Jpn 85:90–95Google Scholar
  2. 2.
    Vasylechko L, Senyshyn A, Bismayer U (2009) In: Gschneidner Jr KA, Bünzli J–CG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths, vol 39. Elsevier, Amsterdam, pp 113–295Google Scholar
  3. 3.
    Holmes LM, Van Uitert LG, Hecker RR, Hull GW (1972) Phys Rev B5:138–146Google Scholar
  4. 4.
    Schuchert H, Hüfner S, Faulhaber R (1969) Z Phys 222:105–127CrossRefGoogle Scholar
  5. 5.
    Valiev UV, Gruber JB, ShA Rakhimov, Nabelkin OA (2003) Phys Stat Sol b 237:564–574CrossRefGoogle Scholar
  6. 6.
    Cashion JD, Cooke AH, Thorp TL, Wells MR (1968) J Phys C 1:539–541CrossRefGoogle Scholar
  7. 7.
    Bidaux A, Meriel P (1968) J Phys 29:220–224Google Scholar
  8. 8.
    Landau DP, Keen BE, Schneider B, Wolf WP (1971) Phys Rev B 3:2310–2343CrossRefGoogle Scholar
  9. 9.
    Numazawa T, Kimura H, Shimamura K, Fukuda T (2004) J Mater Sci 33:827–831CrossRefGoogle Scholar
  10. 10.
    Kuz’min MD, Tishin AM (1993) J Appl Phys 73:4083–4085CrossRefGoogle Scholar
  11. 11.
    Ghosh T, Chhaparwal S (2007) In: Goddard WA III, Brenner DW, Lyshevski SE, Iafrate GJ (eds) Handbook of nanoscience, engineering, and technology. CRC Press, Boca Raton, pp 21–45Google Scholar
  12. 12.
    Rao CNR, Cheetham AK (2001) J Mater Chem 11:2887–2894CrossRefGoogle Scholar
  13. 13.
    Pechini MP (1967) US Pat. 3,330,697, 6 ppGoogle Scholar
  14. 14.
    Takata H, Induka M, Notsu Y, Harada M (2006) J Alloys Compd 408:1190–1192CrossRefGoogle Scholar
  15. 15.
    Glorieux B, Berjoan R, Matecki M, Kammouni A, Perarnau D (2007) Appl Surf Sci 253:3349–3359CrossRefGoogle Scholar
  16. 16.
    Mathur S, Veith M, Shen H, Hüfner S, Jilavi MH (2002) Chem Mater 14:568–582CrossRefGoogle Scholar
  17. 17.
    Chroma M, Pinkas J, Pakutinskiene I, Beganskiene A, Kareiva A (2005) Ceram Int 31:1123–1130CrossRefGoogle Scholar
  18. 18.
    Williams GP (2004) In: Lide D (ed) CRC handbook of chemistry and physics, 85th edn. CRC Press, Boca Raton, pp 10–208, 209, 211Google Scholar
  19. 19.
    Hatscher S, Schilder H, Lueken H, Urland W (2005) Pure Appl Chem 77:497–511CrossRefGoogle Scholar
  20. 20.
    Casey AT, Mitra S (1976) In: Boudreaux EA, Mulay LN (eds) Theory and applications of molecular paramagnetism. Wiley-Interscience, New York, pp 278–316Google Scholar
  21. 21.
    Farrell J, Wallace WE (1966) Inorg Chem 5:105–109CrossRefGoogle Scholar
  22. 22.
    Sykes MF, Hunter DL, McKenzie DS, Heap BR (1972) J Phys A: Gen Phys 5:667–673CrossRefGoogle Scholar
  23. 23.
    Borowiec MT, Dyakonov VP, Jedrzejezak A, Markovich VI, Pavlyuk AA, Szymczak H, Zubov EE, Zaleski M (1998) J Low Temp Phys 110:1003–1011CrossRefGoogle Scholar
  24. 24.
    Hanuza J, Macalic L, Ryba-Romanowski W, Mugenski E, Witke K, Piltz W, Reich P (1988) J Solid State Chem 73:488–501CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Inorganic and Physical ChemistryUniversity of Food TechnologiesPlovdivBulgaria
  2. 2.Institute of Solid State PhysicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations