Journal of Sol-Gel Science and Technology

, Volume 58, Issue 3, pp 587–593 | Cite as

Fabrication and properties of MgF2 composite film modified with carbon nanotubes

  • Feng-Ying Wang
  • Yue-Feng Zhu
  • Yin Jiang
  • Ren-Ping Zhang
Original Paper


Carbon nanotubes (CNTs) were used to modify magnesium fluoride (MgF2) film via the spin coating technique. Nanoparticles of MgF2 were in situ synthesized on surfaces of CNTs resulted in the composites (MgF2–CNTs) by means of sol–gel technique. The sizes of the MgF2 nanoparticles in situ synthesized on CNTs surfaces could be modulated by processing the MgF2 sol–gel in different ways. The MgF2–CNTs as prepared was mixed with MgF2 sol to fabricate composite films (MgF2–CNTs/MgF2). Instead of adding directly CNTs, adding MgF2–CNTs, into MgF2 sol could effectively improve the dispersion of CNTs, avoid emergence of carbon clusters in the compsite film, decrease surface roughness of the film, and enhance the interaction between the CNTs and MgF2 matrix. In the paper, the MgF2 nanoparticles were in situ synthesized on the surfaces of multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) respectively to prepare MgF2–SWCNTs/MgF2 and MgF2–MWCNTs/MgF2 composite films. Experimental results showed that the transparency of the MgF2–SWCNTs/MgF2 composite film was higher than that of the MgF2–MWCNTs/MgF2 film in the range of ultraviolet, visible and near-infrared wavelengths. The results showed SWCNTS could be an ideal reinforcement of MgF2 films to get good toughness, and retain its optical transmittance at the same time.


Magnesium fluoride Carbon nanotubes Composites film Sol–gel 


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Qian D, Wagner GJ, Liu WK et al (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495–533CrossRefGoogle Scholar
  3. 3.
    Hone J, Llaguno MC, Biercuk MJ et al (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A: Mater Sci Process 74:339–343CrossRefGoogle Scholar
  4. 4.
    Gao L, Zhou XF, Ding YL (2007) Effective thermal and electrical conductivity of carbon nanotube composites. Chem Phys Lett 434:297–300CrossRefGoogle Scholar
  5. 5.
    Zhou TL, Wang X, Liu XH et al (2010) Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon 48:1171–1176CrossRefGoogle Scholar
  6. 6.
    Pasupuleti S, Peddetti R, Santhanam S, Jen KP, Wing ZN, Hecht M, Halloran JP (2008) Toughening behavior in a carbon nanotube reinforced silicon nitride composite. Mater Sci Eng A 491:224–229CrossRefGoogle Scholar
  7. 7.
    Noguchi T, Magario A, Fukazawa S et al (2004) Carbon nanotube/aluminium composites with uniform dispersion. Mater Trans 45(2):602–604CrossRefGoogle Scholar
  8. 8.
    Laha T, Agarwat A, Tim M et al (2004) Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater Sci Eng A 381:249–258CrossRefGoogle Scholar
  9. 9.
    Wang J, Kou H, Liu X et al (2007) Reinforcement of mullite matrix with multi-walled carbon nanotubes. Ceram Int 33(5):719–722CrossRefGoogle Scholar
  10. 10.
    Balani K, Zhang T, Karakoti A, Li WZ et al (2008) In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating. Acta Mater 56(3):571–579CrossRefGoogle Scholar
  11. 11.
    Estili M, Kawasaki A (2008) An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scripta Mater 58:906–909CrossRefGoogle Scholar
  12. 12.
    Morisada Y, Miyamoto Y, Takaura Y et al (2007) Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. Int J Refract Metal Hard Mater 4(25):322–327CrossRefGoogle Scholar
  13. 13.
    Yan S, Lian G, Xue GY, Xia L et al (2009) Preparation and electrical characterization of carbon nanotube/ZrO2 composite ceramics. J Phys: Conf Ser 152:1–6CrossRefGoogle Scholar
  14. 14.
    Zhan GD, Kuntz JD, Wan J et al (2003) Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocomposites. Nat Mater 2(1):38–42CrossRefGoogle Scholar
  15. 15.
    Dusza J, Blugan G, Morgiel J et al (2009) Hot-pressed and spark plasma sintered zirconia/carbon nanofiber composites. J Eur Ceram Soc 29(15):3177–3184CrossRefGoogle Scholar
  16. 16.
    Inam F, Yan H, Peijs T et al (2010) Electrically conductive alumina–carbon nanocomposites prepared by spark plasma sintering. J Eur Ceram Soc 30(2):153–157CrossRefGoogle Scholar
  17. 17.
    Jiang L, Gao L (2008) Densified multiwalled carbon nanotubes–titanium nitride composites with enhanced thermal properties. Ceram Int 34(1):231–235CrossRefGoogle Scholar
  18. 18.
    Show Y, Takahashi K (2009) Stainless steel bipolar plate coated with carbon nanotube (CNT)/polytetrafluoroethylene (PTFE) composite film for proton exchange membrane fuel cell (PEMFC). J Power Sour 190:322–325CrossRefGoogle Scholar
  19. 19.
    Shin DH, Yoon KH, Kwon OH et al (2006) Surface Resistivity and Rheological Behaviors of Carboxylated Multiwall Carbon Nanotube-Filled PET Composite Film. J Appl Polym Sci 99:900–904CrossRefGoogle Scholar
  20. 20.
    Wang Z, Zhu ZZ, Shi J et al (2007) Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film. Appl Surf Sci 253:8811–8817CrossRefGoogle Scholar
  21. 21.
    Umasankar Y, Shie JW, Chen SM (2009) Electrocatalytic activity of oxygen and hydrogen peroxide reduction at poly (iron tetra(o-aminophenyl) porphyrin) coated multiwalled carbon nanotube composite film. J Electrochem Soc 156(12):238–244CrossRefGoogle Scholar
  22. 22.
    Lee J, Park EJ, Choi J et al (2010) Polyurethane/PEG-modified MWCNT composite film for the chemical vapor sensor application. Synth Met 160:566–574CrossRefGoogle Scholar
  23. 23.
    Sun ZQ, Cai Q, Song XP (2008) Microstructure and electrical conductivity of Au-MgF2 nanoparticle cermet films. Thin Solid Films 516:2280–2285CrossRefGoogle Scholar
  24. 24.
    He YP, Zhang ZY, Hoffmann C et al (2008) Embedding Ag nanoparticles into MgF2 nanorod Arrays. Adv Funct Mater 18(11):1676–1684CrossRefGoogle Scholar
  25. 25.
    Sun ZQ, Xiao L, Cao L et al (2009) Optical nonlinear characteristics of MgF2 films containing Cu nanoparticles. Chin Opt Lett 10(7):964–966Google Scholar
  26. 26.
    Wojciechowska M, Zielinski M, Pietrowski M (2003) MgF2 as a non-conventional catalyst support. J Fluor Chem 1(120):1–11CrossRefGoogle Scholar
  27. 27.
    Kalevaru VN, Raju BD, Rao VV et al (2009) Preparation, characterization and catalytic evaluation of MgF2 supported V2O5 catalysts for ammoxidation of 3-picoline. Appl Catal A: Gen 352:223–233CrossRefGoogle Scholar
  28. 28.
    Hannes K, Erhard K, Andreas H et al (2008) Transparent MgF2-films by sol-gel coating: synthesis and optical properties. Thin Solid Films 516:4175–4177Google Scholar
  29. 29.
    Tsuyoshi M, Hitoshi I, Akira T (2008) Investigation of MgF2 optical thin films with ultralow refractive indices prepared from autoclaved sols. Appl Opt 13(47):246–250Google Scholar
  30. 30.
    Tsuyoshi M, Hitoshi I, Izumi M et al (2004) Investigations of MgF2 optical thin films prepared from autoclaved sol. J Sol-Gel Sci Technol 32:161–165CrossRefGoogle Scholar
  31. 31.
    Hitoshi I, Shunsuke N, Tsuyoshi M et al (2008) Preparation of MgF2-SiO2 thin films with a low refractive index by a sol-gel process. Appl Opt 13(47):200–205Google Scholar
  32. 32.
    Wojciechowska M, Czajka B, Pietrowski M et al (2000) MgF2 as a non-conventional catalytic support. Surface and structure characterization. Catal Lett 66(3):147–153CrossRefGoogle Scholar
  33. 33.
    Zhu YF, Shi L, Liang J et al (2008) Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics. Compos: Part B 39:1136–1141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Feng-Ying Wang
    • 1
    • 2
  • Yue-Feng Zhu
    • 1
    • 2
  • Yin Jiang
    • 1
    • 2
  • Ren-Ping Zhang
    • 1
    • 2
  1. 1.Key Laboratory for Advanced Materials Processing TechnologyMinistry of EducationBeijingPeople’s Republic of China
  2. 2.Department of Mechanical EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations