Advertisement

Journal of Sol-Gel Science and Technology

, Volume 58, Issue 2, pp 557–563 | Cite as

Synthesis, characterization and photocatalytic properties of nanoparticles CuAl2O4 by Pechini method using Taguchi statistical design

  • Mahnaz Naderi
  • Armen Shamirian
  • Mohammad Edrisi
Article

Abstract

In the present work nano crystalline copper aluminate (CuAl2O4) has been synthesized by the Pechini method using aqueous solutions containing corresponding metal nitrates. A Taguchi L4 statistical design was employed for investigating the most effective factors on the synthesis conditions and their interactions and production optimization. Nano crystalline CuAl2O4 particles with crystal size between 17 and 26 nm were obtained. The product characterized by XRD, FT-IR, DLS and TGA. The morphological properties have investigated using SEM. The photocatalytic degradation was investigated using methyl orange under the irradiation of visible light.

Keywords

Pechini method Nanoparticles Taguchi Copper aluminate Photocatalyst 

References

  1. 1.
    Shriver DF, Atkins P, Inorganic Chemistry, 3edn. WH. Freeman and Company, NewyorkGoogle Scholar
  2. 2.
    Ohgushi T, Umeno S (1987) Bull Chem Soc Jpn 60:4457CrossRefGoogle Scholar
  3. 3.
    Jacob KT, Jayadevan KP, Mallya RM (2000) Adv Mater 12:440CrossRefGoogle Scholar
  4. 4.
    DeBie E, Doyen P (1962) Cobalt 15:3Google Scholar
  5. 5.
    Li W, Li J, Guo JJ (2003) Europ Ceram Soc 23:2289–2295CrossRefGoogle Scholar
  6. 6.
    Edelstine A, Cammarata RC (1996) In: Nanomaterials: synthesis, Properties and Applications. Institute of Physics Publishing, Bristol and PhiladelphiaCrossRefGoogle Scholar
  7. 7.
    Lee K, Song I, Park G (1993) J appl Phys 74:1459CrossRefGoogle Scholar
  8. 8.
    Salavati-Niasari M, Farhadi-Khouzani M, Davar F (2009) J Sol-Gel Sci Techn 52(3):321–327CrossRefGoogle Scholar
  9. 9.
    Yanyan J, Jinggang L, Xiaitao S (2007) J Sol-Gel Sci Techn 42:41–45CrossRefGoogle Scholar
  10. 10.
    Mellor WJ (1937) Trans Chem Soc 36:1Google Scholar
  11. 11.
    Hedvall JA, Heuberger JZ (1921) Anorg Allg Chem 116:137CrossRefGoogle Scholar
  12. 12.
    Wang DF, Zhou ZG, Ye JH (2004) Catalysis Today 891:93–95Google Scholar
  13. 13.
    Ko YG, Lee WY (2002) Catalysis Lett 157:83Google Scholar
  14. 14.
    Bessekhouad Y, Trari MY (2001) J Hydrog Energy 357:27Google Scholar
  15. 15.
    Baker JE, Burch R, Yugin N (1991) Appl Catal 73:135CrossRefGoogle Scholar
  16. 16.
    Valenzuela MA, Jacops Jp, Bosch P, Reijine S, Zapata B, Brongersma HH (1997) Appl Catal A Gen 80:226Google Scholar
  17. 17.
    Chen LT, Hwang ChSh, Chen IG, Chang ShJ (2006) J Alloys Compd 426:395CrossRefGoogle Scholar
  18. 18.
    Zawadzki M, Wrzyszcz J (2000) Mater Res Bull 35:109CrossRefGoogle Scholar
  19. 19.
    Chen Z, Shi E, Zheng Y, Li W, Wu N, Zhong W (2002) Mater Lett 56:601CrossRefGoogle Scholar
  20. 20.
    Zawadzki M, Wrzyszcz J, Trawczy’nski J, Grabowska H, Mi’sta W (2001) Appl Catal A Gen 210:263CrossRefGoogle Scholar
  21. 21.
    Mayer F, Hempelmann R, Mathur S, Veith M (1999) J Mater Chem 9:1755–1763CrossRefGoogle Scholar
  22. 22.
    Phani AR, Passacantando M, Santucchi S (2001) Mater Chem Phys 68:66CrossRefGoogle Scholar
  23. 23.
    Arean CO, Sintes BS (1997) Microporous Mater 8:187CrossRefGoogle Scholar
  24. 24.
    Liu GG, Zhang XZ, Xu YJ, Niu XS (2004) Chemospher 1284:44Google Scholar
  25. 25.
    Sugimoto T, Zhou XP, Murmatus A (2003) J Colloid Interface Sci 43:259Google Scholar
  26. 26.
    Kartini I, Meredith P, Diniz JC, Lu GQ (2004) sol-gel Sci Techn 31:185CrossRefGoogle Scholar
  27. 27.
    Zawadzki M (2007) J Alloy Compd 439:312–320CrossRefGoogle Scholar
  28. 28.
    Mimani T (2001) J Alloys Compd 315:123–128CrossRefGoogle Scholar
  29. 29.
    Adak AK, Pathak A, Pramanik P (1998) J Mater Sci Lett 17:559CrossRefGoogle Scholar
  30. 30.
    Kingsley JJ, Suresh Patil KC (1990) J Mater Sci 25:1305Google Scholar
  31. 31.
    Pechini. MP (1967) US Patent 3330697Google Scholar
  32. 32.
    Kakihana M, Arima M, Yoshimura M (1999) J Alloys Compd 283:103CrossRefGoogle Scholar
  33. 33.
    Roy R (1990) A Primer on the Taguchi method. Van Nostrand Reinhold, New YorkGoogle Scholar
  34. 34.
    Taguchi G (1962) Tables of Orthogonal Arrays and Linear Graphs. Maruzen, TokyoGoogle Scholar
  35. 35.
    Saberi A, Golestani-Fard F, Sarpoolaki H, Willert-Porada M, Gerdes T, Simon R (2008) J Alloys Compd 462:142–146CrossRefGoogle Scholar
  36. 36.
    Tanaka Y, Tatsuya T, Kikuchi R (2005) J Appl Catal A Gen 279:59–66CrossRefGoogle Scholar
  37. 37.
    Nakamoto. K, Infrared spectra of inorganic and coordination compound, 4th edn. Chemical industry Press, BeijingGoogle Scholar
  38. 38.
    Sigel GA, Bartlett RA, Decker D, Olmstead MM, Power PP (1987) Inorganic Chem 26:1773CrossRefGoogle Scholar
  39. 39.
    WeizhongLv Lv, Liu B, Qiu Q (2009) J Alloys Compd 479:480–483CrossRefGoogle Scholar
  40. 40.
    Nutek, Inc. Bloomfield Hills, Michigan. USA, http://www.nutek-us.com

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mahnaz Naderi
    • 1
  • Armen Shamirian
    • 1
  • Mohammad Edrisi
    • 1
  1. 1.Department of chemistryAmirkabir University of TechnologyTehranIran

Personalised recommendations