Journal of Sol-Gel Science and Technology

, Volume 58, Issue 2, pp 490–500 | Cite as

Ambient-curable polysiloxane coatings: structure and mechanical properties

  • Xiaobing Chen
  • Shuxue Zhou
  • Bo You
  • Limin Wu
Original Paper


Ambient-curable polysiloxane coatings were prepared by hydrolysis and condensation of 3-methacryloxypropylmethyldimethoxysilane (MPDS) and methyltriethoxysilane (MTES) and subsequently mixing with 3-aminopropyltriethoxysilane (APS). The structures of the as-obtained polysiloxane oligomers as well as the dried polysiloxane coatings on tinplate substrates were analyzed by FTIR and 29Si NMR. The mechanical properties of the coatings were thoroughly examined at both macro-level and micro-level using a pendulum hardness rocker, an impact tester, and a nanoindentation/nanoscratch instrument. Effects of the molar ratio of MPDS/MTES, the dosage of aqueous ammonia solution, and the catalytic condition on the structure of polysiloxane oligomers as well as the structure and mechanical properties of the polysiloxane coatings were investigated. The dried coatings with thickness of 15–26 μm are highly elastic. The hardness (Koenig hardness and microhardness), impact resistance and scratch resistance are mainly dependent on the condensation degree of polysiloxane coatings rather than on the organic component of the coatings. A proper pre-hydrolysis process or more APS is benefit for enhancing the mechanical strength of the polysiloxane coatings. Polysiloxane coatings with high hardness and excellent scratch resistance can be prepared preferentially at low molar ratio of MPDS/MTES.


Alkoxysilane Sol–gel Polysiloxane coatings Mechanical properties 



This work was supported by the Foundation of Science and Technology of Shanghai (09DJ1400205), Shanghai Shuguang Scholar Program (09SG06), Nature Science Foundation of China (51073038) and the innovative team of Ministry of Education of China (IRT0911).


  1. 1.
    Mélanie F, Habiba M, Brice G, Jean-Philippe B (2001) J Non-Cryst Solids 293–295:527–533Google Scholar
  2. 2.
    Dave BC, Hu XK, Devaraj Y, Dhali SK (2004) J Sol–Gel Sci Technol 32:143–147CrossRefGoogle Scholar
  3. 3.
    Subasri R, Jyothirmayi A, Reddy DS (2010) Surf Coat Technol 205:806–813CrossRefGoogle Scholar
  4. 4.
    Ying-Sing L, Paul BW, Rosalyn P, Tuan T (2004) Spectrochim Acta Part A 60:2759–2766CrossRefGoogle Scholar
  5. 5.
    Ying-Sing L, Yu W, Tuan T, Anshion P (2005) Spectrochim Acta Part A 61:3032–3037CrossRefGoogle Scholar
  6. 6.
    Ying-Sing L, Abdul B (2008) Spectrochim Acta Part A 70:1013–1019CrossRefGoogle Scholar
  7. 7.
    Wolfgang EG, Hansala T, Selma H, Matthias P, Andreas K, Gerhard Z, Gerhard EN (2006) Surf Coat Technol 200:3056–3063CrossRefGoogle Scholar
  8. 8.
    Ivan J, Boris O, Angela ŠV, Matjaž K, Janez K (2010) Thin Solid Films 518:2710–2721CrossRefGoogle Scholar
  9. 9.
    Malzbender J, With G (2001) Surf Coat Technol 135:202–207CrossRefGoogle Scholar
  10. 10.
    Nemeth S, Liu YC (2009) Thin Solid Films 517:4888–4891CrossRefGoogle Scholar
  11. 11.
    Mehner A, Dong J, Prenzel T, Datchary W, Lucca DA (2010) J Sol–Gel Sci Technol 54:355–362CrossRefGoogle Scholar
  12. 12.
    Josefina B, Damián AL, Ana LC (2009) Wear 266:1165–1170CrossRefGoogle Scholar
  13. 13.
    Walid AD, John HX, Tao X (2004) J Am Ceram Soc 87:1782–1784CrossRefGoogle Scholar
  14. 14.
    Mackenzie JD, Bescher EP (2000) J Sol–Gel Sci Technol 19:23–29CrossRefGoogle Scholar
  15. 15.
    Wang H, Robert A (2007) Corros Sci 49:4491–4503CrossRefGoogle Scholar
  16. 16.
    Xing W, You B, Wu LM (2008) J Coat Technol Res 5:65–72CrossRefGoogle Scholar
  17. 17.
    Xing W, You B, Wu LM (2007) J Sol–Gel Sci Techn 42:187–195CrossRefGoogle Scholar
  18. 18.
    Huang Y, Liu W (2010) J Sol–Gel Sci Technol 55:261–268CrossRefGoogle Scholar
  19. 19.
    Sarmento V, Schiavetto M, Hammer P, Benedetti A, Fugivara C, Suegama PH, Pulcinelli SH, Santilli CV (2010) Surf Coat Technol 204:2689–2701CrossRefGoogle Scholar
  20. 20.
    Spirkova M, Brus J, Hlavata D, Kamisova H, Matejka L, Strachota A (2004) J Appl Polym Sci 92:937–950CrossRefGoogle Scholar
  21. 21.
    Donley MS, Mantz RA, Khramov AN, Balbyshev VN, Kasten LS, Gaspar DJ (2003) Prog Org Coat 47:401–415CrossRefGoogle Scholar
  22. 22.
    Innocenzi P, Brusatin G, Licoccia S, Vona M, Babonneau F, Bruno A (2003) Chem Mater 15:4790–4797CrossRefGoogle Scholar
  23. 23.
    Pharr GM, Oliver WC, Brotzen FR (1992) J Mater Res 7:1564–1583CrossRefGoogle Scholar
  24. 24.
    Osterholtz FD, Pohl ER (1992) J Adhes Sci Technol 6:127–149CrossRefGoogle Scholar
  25. 25.
    Ferchichi A, Calas-Etienne S, Smaı¨hi M, Pre′vot G, Solignac P, Etienne P (2009) J Mater Sci 44:2752–2758CrossRefGoogle Scholar
  26. 26.
    Hideki K, Yoshiaki H, Atsushi S, Kazuyuki K (2008) Chem Asian J 3:600–606CrossRefGoogle Scholar
  27. 27.
    Chen GD, Zhou SX, Gu GX, Wu LM (2005) Macromol Chem Phys 206:885–892CrossRefGoogle Scholar
  28. 28.
    Liu WC, Yang CC, Chen WC, Dai BT, Tsai MS (2002) J Non-Cryst Solids 311:233–240CrossRefGoogle Scholar
  29. 29.
    Han YH, Taylor A, Mantle MD, Knowles KM (2007) J Sol–Gel Sci Technol 43:111–123CrossRefGoogle Scholar
  30. 30.
    Mather BD, Viswanathan K, Miller KM, Long TE (2006) Prog Polym Sci 31:487–531CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science and the Advanced Coatings Research Center of Education Ministry of ChinaFudan UniversityShanghaiChina

Personalised recommendations