Advertisement

Journal of Sol-Gel Science and Technology

, Volume 58, Issue 1, pp 326–329 | Cite as

TiO2/SiO2 hybrid nanomaterials: synthesis and variable UV-blocking properties

  • Yihe Zhang
  • Li Yu
  • Shanming Ke
  • Bo Shen
  • Xianghai Meng
  • Haitao Huang
  • Fengzhu Lv
  • John H. Xin
  • H. L. W. Chan
Original Paper

Abstract

Silica and core–shell structured titania/silica (TiO2/SiO2) nanoparticles with particles size ranging from tens to hundreds of nanometers were prepared and deposited onto cotton fabric substrates by sol–gel process. The morphologies of the nanoparticles were characterized by field-emission scanning electron microscope (FE-SEM). The photocatalytic decomposition properties as well as UV-blocking properties of the fabrics treated with SiO2 and TiO2/SiO2 nanoparticles were investigated.

Keywords

Sol–gel Titania/silica UV-blocking Photocatalytic decomposition 

Notes

Acknowledgments

This research was supported by the special co-construction project of Beijing city education committee, The Key Project of Chinese Ministry of Education (No: 107023), The Hong Kong Polytechnic University Postdoctoral Fellowship Scheme (G-YX70) and a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (No: PolyU5166/05E), Doctoral Program Foundation of Institution of higher education of China (2-2-08-07).

References

  1. 1.
    Hoffmann K, Kaspar K, Gambichler T, Altmeyer P (2000) J Am Acad Dermatol 43:1009CrossRefGoogle Scholar
  2. 2.
    Hatch KL (2002) Recent Res Cancer Res 160:42Google Scholar
  3. 3.
    Palacin F (1997) Melliand Int 3:169Google Scholar
  4. 4.
    Xin JH, Daoud WA, Kong YY (2004) Tex Res J 74:97CrossRefGoogle Scholar
  5. 5.
    Daoud WA, Xin JH, Zhang YH (2005) J Non-Cryst Solids 351:1486CrossRefGoogle Scholar
  6. 6.
    Daoud WA, Xin JH, Zhang YH (2005) Surf Sci 599:69CrossRefGoogle Scholar
  7. 7.
    Fei B, Deng Z, Xin JH, Zhang YH, Pang G (2006) Nanotechnology 17:1927CrossRefGoogle Scholar
  8. 8.
    Fujishima A, Honda K (1972) Nature 238:5358CrossRefGoogle Scholar
  9. 9.
    Wauthoz P, Ruwet M, Machej T, Grange P (1991) Appl Catal 69:149CrossRefGoogle Scholar
  10. 10.
    Kato K, Tsuzuki A, Taoda H, Torii Y, Kato T, Butsugan Y (1994) J Mater Sci 29:5911CrossRefGoogle Scholar
  11. 11.
    Christensen PA, Curtis TP, Egerton TA, Kosa SAM, Tinlin JR (2003) Appl Catal B 41:371CrossRefGoogle Scholar
  12. 12.
    Daoud WA, Xin JH (2004) J Sol–Gel Sci Technol 29:25CrossRefGoogle Scholar
  13. 13.
    Daoud WA, Xin JH (2005) Chem Commun 2110Google Scholar
  14. 14.
    Anpo M, Shima T, Kodma S, Kubokawa Y (1987) J Phys Chem 91:4305CrossRefGoogle Scholar
  15. 15.
    Qi KH, Daoud WA, Xin JH, Mark CL, Tang W, Cheung WP (2006) J Mater Chem 16:4567CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Xiong G, Yao N, Yang W, Fu X (2001) Catalysis Today 68:89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yihe Zhang
    • 1
    • 2
  • Li Yu
    • 1
    • 2
  • Shanming Ke
    • 3
  • Bo Shen
    • 1
    • 2
  • Xianghai Meng
    • 1
    • 2
  • Haitao Huang
    • 3
  • Fengzhu Lv
    • 1
    • 2
  • John H. Xin
    • 4
  • H. L. W. Chan
    • 3
  1. 1.School of Materials Science and TechnologyChina University of GeosciencesBeijingPeople’s Republic of China
  2. 2.State Key Laboratory of Geological Processes & Mineral ResourcesChina University of GeosciencesBeijingPeople’s Republic of China
  3. 3.Department of Applied Physics and Materials Research CenterThe Hong Kong Polytechnic UniversityHung Hom, KowloonPeople’s Republic of China
  4. 4.Institute of Textile and ClothingThe Hong Kong Polytechnic UniversityHung Hom, KowloonPeople’s Republic of China

Personalised recommendations