Journal of Sol-Gel Science and Technology

, Volume 59, Issue 3, pp 432–447 | Cite as

Calcium phosphate bioceramics and bioceramic composites

  • Deepak K. Pattanayak
  • B. T. Rao
  • T. R. Rama Mohan
Original Paper


This paper reviews selected aspects of research work carried out in bioceramics and bioceramic composites at the Ceramics Laboratory IIT, Bombay, India. The focus here is in understanding and developing calcium hydroxyapatite (HA) bioceramics and biocomposites, including calcium hydroxyapatite-titanium (HA-Ti) and calcium hydroxyapatite-polymethylmethacrylate (HA-PMMA). Research involving apatite-wollastonite (AW) bioglass ceramics and bioceramic composites of AW with titanium as well as with polymethylmethacrylate will be presented in a future article. HA powders were precipitated from solutions with varying Ca/P ratios and calcined at a range of temperatures to investigate their structural evolution. HA-Ti composites were prepared by powder metallurgical processes using HA powders calcined at 400 °C, followed by compaction at 600 MPa and subsequent sintering at 1,000–1,200 °C. HA-PMMA composites containing up to 40 wt% PMMA were prepared by hot pressing at 150 °C and 150 MPa pressure. The phases present in the various materials were identified by X-ray diffraction (XRD) and functional groups by FTIR, while the sample morphologies were investigated by SEM. The bioactivity of the composites was evaluated by soaking them in simulated body fluid (SBF) for 7 days, to evaluate their apatite-forming ability (a key indicator of bioactivity). The results obtained are interpreted to aid in the development of “design rules” for the use of such biocomposite materials in specific biomedical application.


Hydroxyapatite Biocomposites Simulated body fluid SEM PMMA Powder metallurgy 


  1. 1.
    Black J (1992) Biological performance of materials: fundamentals of biocompatibility. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Park JB (1992) Biomaterials: an introduction, CRC handbook of biomedical engineering. CRC Press, Boca Raton-FloridaGoogle Scholar
  3. 3.
    Hench LL (1991) J Am Ceram Soc 74:1487–1510CrossRefGoogle Scholar
  4. 4.
    Christel P, Claes L, Brown SA (1991) In: Szycher M (ed) High performance biomaterials: a comprehensive guide to medical and pharmaceutical applications. Technomic, LancasterGoogle Scholar
  5. 5.
    Moyen BJL, Lahey PJ, Weinberg EH, Harris WH (1978) J Bone Joint Surg Am 60:940–947Google Scholar
  6. 6.
    Uhthoff HK, Finnegan M (1983) J Bone Joint Surg Br 65B:66–71Google Scholar
  7. 7.
    Huiskes R (1980) Acta Orthop Scand 185(Suppl):1–208Google Scholar
  8. 8.
    Schneider E et al (1989) Clin Orthop Relat Res 248:200–209Google Scholar
  9. 9.
    Whiteside LA (1989) Clin Orthop 247:138–147Google Scholar
  10. 10.
    Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz ER (1995) Encyclopedic handbook of biomaterials and bioengineering, Part B: applications. Marcel Dekker, New YorkGoogle Scholar
  11. 11.
    Hench LL (1998) J Am Ceram Soc 81:1705–1727CrossRefGoogle Scholar
  12. 12.
    Nissan BB, Chai C, Evans L (1995) Crystallographic and spectroscopic characterization and morphology of biogenic and synthetic apatites, encyclopedia handbook of biomaterials and bioengineering, Part B applications. Marcel Dekker, New YorkGoogle Scholar
  13. 13.
    Chaair H, Heughebaerth JC, Heughebaerth M (1995) J Mater Chem 5:895–899CrossRefGoogle Scholar
  14. 14.
    Dhondt CL, Verbeeck RMH, Maeyer EAPD (1996) J Mater Sci: Mater Med 7:201–205CrossRefGoogle Scholar
  15. 15.
    Morales JG, Burgues JT, Boix T, Fraile J, Clemente RR (2001) Cryst Res Technol 36:15–26CrossRefGoogle Scholar
  16. 16.
    Kumta PN, Sfeir C, Lee D, Olton D, Choi D (2005) Acta Biomater 1:65–83CrossRefGoogle Scholar
  17. 17.
    Ishikawa K, Ducheyne P, Radin S (1993) J Mater Sci: Mater Med 4:165–168CrossRefGoogle Scholar
  18. 18.
    Krajewski A (1995) J Mater Sci Lett 14:1300–1302CrossRefGoogle Scholar
  19. 19.
    Raynaud S, Champion E, Assollant DB, Thomas P (2002) Biomaterials 23:1065–1072CrossRefGoogle Scholar
  20. 20.
    Raynaud S, Champion E, Assollant DB (2002) Biomaterials 23:1073–1080CrossRefGoogle Scholar
  21. 21.
    Raynaud S, Champion E, Lafon JP, Assollant DB (2002) Biomaterials 23:1081–1089CrossRefGoogle Scholar
  22. 22.
    Wang PE, Chaki TK (1993) J Mater Sci: Mater Med 4:150–158CrossRefGoogle Scholar
  23. 23.
    Katakam S, Krishna DSR, Kumar TSS (2003) Mater Lett 57:2716–2721CrossRefGoogle Scholar
  24. 24.
    Pattanayak DK, Dash R, Prasad RC, Rao BT, Mohan TRR (2007) J Mater Sci Eng C 27:684–690CrossRefGoogle Scholar
  25. 25.
    Pattanayak DK, Divya P, Upadhyay S, Prasad RC, Mohan TRR (2005) Trends Biomater Artif Organs 18:93–101Google Scholar
  26. 26.
    Ning CQ, Zhou Y (2002) Biomaterials 23:2909–2915CrossRefGoogle Scholar
  27. 27.
    Ning CQ, Zhou Y (2004) Biomaterials 25:3379–3387CrossRefGoogle Scholar
  28. 28.
    Ning CQ, Zhou Y, Wang HL, Jia DC, Lei TC (2000) J Mater Sci Lett 19:1243–1245CrossRefGoogle Scholar
  29. 29.
    Shi W, Kamiya A, Zhu J, Watazu A (2002) J Mater Sci Eng A 337:104–109CrossRefGoogle Scholar
  30. 30.
    Yang Y, Kim KH, Agrawal CM, Ong JL (2004) Biomaterials 25:2927–2932CrossRefGoogle Scholar
  31. 31.
    Weng J, Liu X, Zhang X, Ji X (1994) J Mater Sci Lett 13:159–161CrossRefGoogle Scholar
  32. 32.
    de Groot K (1983) Bioceramics of calcium phosphate. CRC Press, Boca RatonGoogle Scholar
  33. 33.
    Harris B (1980) The mechanical behavior of composite materials. The mechanical properties of biological materials. Cambridge University Press, CambridgeGoogle Scholar
  34. 34.
    Lee SM (1991) Orthopedic composites. International encyclopedia of composites. VCH Publishers, New YorkGoogle Scholar
  35. 35.
    Lin TW, Corvelli AA, Frondoza CG, Roberts JC, Hungerford DS (1997) J Biomed Mater Res 36:137–144CrossRefGoogle Scholar
  36. 36.
    Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Compos Sci Technol 61:1189–1224CrossRefGoogle Scholar
  37. 37.
    Bonfield W (1988) J Biomed Eng 10:522–526CrossRefGoogle Scholar
  38. 38.
    Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J (1981) Biomaterials 2:185–186CrossRefGoogle Scholar
  39. 39.
    Deb S, Wang M, Tanner KE, Bonfield W (1996) J Mater Sci: Mater Med 7:191–193CrossRefGoogle Scholar
  40. 40.
    Hench LL (1995) In: Interrante LV, Caspar LA, Ellis AB (eds) Advances in chemistry series. American Chemical Society, WashingtonGoogle Scholar
  41. 41.
    Suwanprateeb J, Tanner KE, Turner S, Bonfield W (1997) J Mater Sci: Mater Med 8:469–472CrossRefGoogle Scholar
  42. 42.
    Williams DF (1990) Concise encyclopedia of medical and dental materials. Pergamon Press, OxfordGoogle Scholar
  43. 43.
    Liu Q, de Wijn JR, van Blitterwijk CA (1998) J Biomed Mater Res 40:490–497CrossRefGoogle Scholar
  44. 44.
    Higashi S, Yamamuro T, Nakamura T, Ikada Y, Hyon SH, Jamshidi K (1986) Biomaterials 7:183–187CrossRefGoogle Scholar
  45. 45.
    Rodriguez-Lorenzo LM, Salinas AJ, Vallet-Regi M, Roman JS (1996) J Biomed Mater Res 30:515–522CrossRefGoogle Scholar
  46. 46.
    Verheyen CCPM, de Wijin JR, van Blitterwijk CA, de Groot K (1992) J Biomed Mater Res 26:1277–1296CrossRefGoogle Scholar
  47. 47.
    Verheyen CCPM, de Wijn JR, van Blitterwijk CA, de Groot K, Rozing PM (1993) J Biomed Mater Res 27:433–444CrossRefGoogle Scholar
  48. 48.
    Knowles JC, Hastings GW (1993) J Mater Sci: Mater Med 4:102–106CrossRefGoogle Scholar
  49. 49.
    Klein CPAT, van der Lubbe HBM, de Groot K (1987) Biomaterials 8:308–310CrossRefGoogle Scholar
  50. 50.
    Jancar J, Dibenedetto AT (1993) J Mater Sci: Mater Med 4:555–561CrossRefGoogle Scholar
  51. 51.
    Ignjatovic N, Tomic S, Dakic M, Miljkovic M, Plavsic M, Uskokovic D (1999) Biomaterials 20:809–816CrossRefGoogle Scholar
  52. 52.
    Liu Q, Wijn JD, Van Blitterswijk CA (1998) J Biomed Mater Res 40:490–497CrossRefGoogle Scholar
  53. 53.
    Zhang RY, Ma PX (1999) J Biomed Mater Res 45:285–293CrossRefGoogle Scholar
  54. 54.
    Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999) J Biomed Mater Res 47:324–335CrossRefGoogle Scholar
  55. 55.
    Grimandi G, Weiss P, Millot F, Daculsi G (1998) J Biomed Mater Res 39:660–666CrossRefGoogle Scholar
  56. 56.
    Gauthier O, Bouler JM, Weiss P, Bosco J, Daculsi G, Aguado E (1999) J Biomed Mater Res 47:28–35CrossRefGoogle Scholar
  57. 57.
    Ni J, Wang M (2002) J Mater Sci Eng C 20:101–109CrossRefGoogle Scholar
  58. 58.
    Heikkib JT, Aho AJ, Kangasniemi I, Yli-Urpo A (1996) Biomaterials 17:1755–1760CrossRefGoogle Scholar
  59. 59.
    Kokubo T, Takadama H (2006) Biomaterials 27:2907–2915CrossRefGoogle Scholar
  60. 60.
    ASTM F394-78 (1991) Standard test method for biaxial flexure strength modulus of rupture of ceramic substrates 424Google Scholar
  61. 61.
    Cattell MJ, Chadwick TC, Knowles JC, Clarke RL, Lynch E (2001) Dent Mater 17:21–33CrossRefGoogle Scholar
  62. 62.
    Meganck JA, Baumann MJ, Case ED, McCabe LR, Allar JN (2005) J Biomed Mater Res 72A:115–126CrossRefGoogle Scholar
  63. 63.
    Kutty TRN (1973) Indian J Chem 11:695–697Google Scholar
  64. 64.
    Skinner HCW, Kittelbergen JS, Beebe RA (1975) J Phys Chem 79:2017–2019CrossRefGoogle Scholar
  65. 65.
    Newesely H, Osborn JF (1980) In: Hastings GW, William DF (eds) Advances in biomaterials, mechanical properties of biomaterials. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Deepak K. Pattanayak
    • 1
  • B. T. Rao
    • 2
  • T. R. Rama Mohan
    • 2
    • 3
  1. 1.Department of Biomedical Sciences, College of Life and Health SciencesChubu UniversityKasugaiJapan
  2. 2.Department of Metallurgical Engineering and Materials ScienceIndian Institute of TechnologyBombayIndia
  3. 3.Powder metallurgy, Ceramics and DiamondsIndian Institute of TechnologyBombayIndia

Personalised recommendations