Skip to main content
Log in

Optical and structural characteristics of yttrium doped ZnO films using sol–gel technology

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Yttrium-doped ZnO gel was spin-coated on the SiO2/Si substrate. The as-prepared ZnO:Y (YZO) thin films then underwent a rapid thermal annealing (RTA) process conducted at various temperatures. The structural and photoluminescence characteristics of the YZO films were discussed thereafter. Our results indicated that the grain size of YZO thin films being treated with various annealing temperatures became smaller as compared to the ones without being doped with yttrium. Furthermore, unlike other ZnO films, the grains of YZO thin films appeared to separate from one another rather than aggregating together as both types of the films were annealed under the same environment. The photoluminescence characteristic measured showed that the UV emission was the only radiation obtained. However, the UV emission intensity of YZO thin film was much stronger than that of the ZnO thin film after annealing them with the same condition. It was also found that the intensity increased with an increase in the annealing temperature, which was caused by the exciton generated and the texture surface of the YZO thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nakamura S, Fasol G (1997) The blue laser diode. Springer, Berlin

    Google Scholar 

  2. Sheu JK, Chang SJ, Kuo CH, Su YK, Wu LW, Lin YC, Lai WC, Tsai JM, Chi GC, Wu RK (2003) IEEE Photonics Technol Lett 15:18–20

    Article  Google Scholar 

  3. Rodrigues SCP, d’Eurydice MN, Sipahi GM, da Silva EF Jr (2005) Microelectronics 36:1002

    Article  CAS  Google Scholar 

  4. Ramanachalam MS, Rohatgi A, Carter WB, Schaffer JP, Gupta TK (1995) J Electron Mater 24:413–419

    Article  CAS  Google Scholar 

  5. Martin SJ, Schwartz SS, Gunshor RL, Pieret RF (1983) J Appl Phys 54:561–569

    Article  CAS  Google Scholar 

  6. Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichinbu SF, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M (2005) Nature Mater 1:42–46

    Article  Google Scholar 

  7. Hoffman RL, Norris BJ, Wagera JF (2003) Appl Phys Lett 82:733–735

    Article  CAS  Google Scholar 

  8. Yoon KH, Cho JY (2000) Mater Res Bull 35:39–46

    Article  CAS  Google Scholar 

  9. Fu Z, Lin B, Zu J (2002) Thin Solid Films 402:302–306

    Article  CAS  Google Scholar 

  10. Nakanishi Y, Miyake A, Kominami H, Aoki T, Hatanaka Y, Shimaoka G (1999) Appl Surf Sci 142:233–236

    Article  CAS  Google Scholar 

  11. Bae SH, Lee SY, Kim HY, Im S (2001) Opt Mater 17:327–330

    Article  CAS  Google Scholar 

  12. Wang YG, Lau SP, Zhang XH, Lee HW, Yu SF, Tay BK, Hng HH (2003) Chem Phys Lett 375:113–118

    Article  CAS  Google Scholar 

  13. Sakurai K, Kanehiro M, Nakahara K, Tanabe T, Fujita S (2000) J Cryst Growth 209:522–525

    Article  CAS  Google Scholar 

  14. Lim J, Shin K, Kim HW, Lee C (2004) J Lumin 109:181–185

    CAS  Google Scholar 

  15. Bethke S, Pan H, Wessels BW (1998) Appl Phys Lett 52:138–140

    Article  Google Scholar 

  16. Minami T, Nanto H, Takata S (1983) Thin Solid Films 109:379–384

    Article  CAS  Google Scholar 

  17. Zhang Y, Lin B, Fu Z, Liu C, Han W (2006) Opt Mater 28:1192–1196

    Article  CAS  Google Scholar 

  18. Chatterjee A, Shen CH, Ganguly A, Chen LC, Hsu CW, Hwang JY, Chen KH (2004) Chem Phys Lett 391:278–282

    Article  CAS  Google Scholar 

  19. Yang Y, Yan H, Fu Z, Yang B, Xia L, Xu Y, Zuo J, Li F (2006) Solid State Commun 138:521–525

    Article  CAS  Google Scholar 

  20. Agyeman O, Xu CN, Shi W, Zheng XG, Suzuki M (2002) Jpn J Appl Phys 41:666–669

    Article  CAS  Google Scholar 

  21. Kuo SY, Chen WC, Cheng CP (2006) Superlattices Microstruct 39:162–170

    Article  CAS  Google Scholar 

  22. Abou-Helal MO, Seeber WT (1997) J Non Cryst Solids 218:139–145

    Article  CAS  Google Scholar 

  23. Wu GS, Zhuang YL, Lin ZQ, Yuan XY, Xie T, Zhang LD (2006) Physica E 31:5–8

    Article  CAS  Google Scholar 

  24. Minami T, Yamamoto T, Miyata T (2000) Thin Solid Films 366:63–68

    Article  CAS  Google Scholar 

  25. Kaur R, Singh AV, Sehrawat K, Mehra NC, Mehra RM (2006) J Non Cryst Solids 352:2565–2568

    Article  CAS  Google Scholar 

  26. Kaur R, Singh AV, Mehra RM (2005) Physica Status Solidi A 202:1053–1059

    Article  CAS  Google Scholar 

  27. Yu Q, Fu W, Yu C, Yang H, Wei R, Sui Y, Liu S, Liu Z, Li M, Wang G, Shao C, Liu Y, Zou G (2007) J Phys D Appl Phys 40:5592–5597

    Article  CAS  Google Scholar 

  28. Hsieh PT, Chen YC, Kao KS, Lee MS, Cheng CC (2007) J Eur Ceram Soc 27:3815–3818

    Article  CAS  Google Scholar 

  29. Futsuhara M, Yoshioka K, Takai O (1998) Thin Solid Films 322:274–281

    Article  CAS  Google Scholar 

  30. Islam MN, Ghosh TB, Chopra KL, Acharya HN (1996) Thin Solid Films 280:20–25

    Article  CAS  Google Scholar 

  31. Kim YS, Tai WP, Shu SJ (2005) Thin Solid Films 491:153–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Tsung Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, PT., Chuang, R.WK., Chang, CQ. et al. Optical and structural characteristics of yttrium doped ZnO films using sol–gel technology. J Sol-Gel Sci Technol 58, 42–47 (2011). https://doi.org/10.1007/s10971-010-2352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2352-0

Keywords

Navigation