Journal of Sol-Gel Science and Technology

, Volume 58, Issue 1, pp 42–47 | Cite as

Optical and structural characteristics of yttrium doped ZnO films using sol–gel technology

  • Po-Tsung Hsieh
  • Ricky Wen-Kuei Chuang
  • Chao-Qun Chang
  • Chih-Ming Wang
  • Shoou-Jinn Chang
Original Paper


Yttrium-doped ZnO gel was spin-coated on the SiO2/Si substrate. The as-prepared ZnO:Y (YZO) thin films then underwent a rapid thermal annealing (RTA) process conducted at various temperatures. The structural and photoluminescence characteristics of the YZO films were discussed thereafter. Our results indicated that the grain size of YZO thin films being treated with various annealing temperatures became smaller as compared to the ones without being doped with yttrium. Furthermore, unlike other ZnO films, the grains of YZO thin films appeared to separate from one another rather than aggregating together as both types of the films were annealed under the same environment. The photoluminescence characteristic measured showed that the UV emission was the only radiation obtained. However, the UV emission intensity of YZO thin film was much stronger than that of the ZnO thin film after annealing them with the same condition. It was also found that the intensity increased with an increase in the annealing temperature, which was caused by the exciton generated and the texture surface of the YZO thin film.


ZnO Yttrium Sol–gel processes UV emission Exciton 


  1. 1.
    Nakamura S, Fasol G (1997) The blue laser diode. Springer, BerlinGoogle Scholar
  2. 2.
    Sheu JK, Chang SJ, Kuo CH, Su YK, Wu LW, Lin YC, Lai WC, Tsai JM, Chi GC, Wu RK (2003) IEEE Photonics Technol Lett 15:18–20CrossRefGoogle Scholar
  3. 3.
    Rodrigues SCP, d’Eurydice MN, Sipahi GM, da Silva EF Jr (2005) Microelectronics 36:1002CrossRefGoogle Scholar
  4. 4.
    Ramanachalam MS, Rohatgi A, Carter WB, Schaffer JP, Gupta TK (1995) J Electron Mater 24:413–419CrossRefGoogle Scholar
  5. 5.
    Martin SJ, Schwartz SS, Gunshor RL, Pieret RF (1983) J Appl Phys 54:561–569CrossRefGoogle Scholar
  6. 6.
    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichinbu SF, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M (2005) Nature Mater 1:42–46CrossRefGoogle Scholar
  7. 7.
    Hoffman RL, Norris BJ, Wagera JF (2003) Appl Phys Lett 82:733–735CrossRefGoogle Scholar
  8. 8.
    Yoon KH, Cho JY (2000) Mater Res Bull 35:39–46CrossRefGoogle Scholar
  9. 9.
    Fu Z, Lin B, Zu J (2002) Thin Solid Films 402:302–306CrossRefGoogle Scholar
  10. 10.
    Nakanishi Y, Miyake A, Kominami H, Aoki T, Hatanaka Y, Shimaoka G (1999) Appl Surf Sci 142:233–236CrossRefGoogle Scholar
  11. 11.
    Bae SH, Lee SY, Kim HY, Im S (2001) Opt Mater 17:327–330CrossRefGoogle Scholar
  12. 12.
    Wang YG, Lau SP, Zhang XH, Lee HW, Yu SF, Tay BK, Hng HH (2003) Chem Phys Lett 375:113–118CrossRefGoogle Scholar
  13. 13.
    Sakurai K, Kanehiro M, Nakahara K, Tanabe T, Fujita S (2000) J Cryst Growth 209:522–525CrossRefGoogle Scholar
  14. 14.
    Lim J, Shin K, Kim HW, Lee C (2004) J Lumin 109:181–185Google Scholar
  15. 15.
    Bethke S, Pan H, Wessels BW (1998) Appl Phys Lett 52:138–140CrossRefGoogle Scholar
  16. 16.
    Minami T, Nanto H, Takata S (1983) Thin Solid Films 109:379–384CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Lin B, Fu Z, Liu C, Han W (2006) Opt Mater 28:1192–1196CrossRefGoogle Scholar
  18. 18.
    Chatterjee A, Shen CH, Ganguly A, Chen LC, Hsu CW, Hwang JY, Chen KH (2004) Chem Phys Lett 391:278–282CrossRefGoogle Scholar
  19. 19.
    Yang Y, Yan H, Fu Z, Yang B, Xia L, Xu Y, Zuo J, Li F (2006) Solid State Commun 138:521–525CrossRefGoogle Scholar
  20. 20.
    Agyeman O, Xu CN, Shi W, Zheng XG, Suzuki M (2002) Jpn J Appl Phys 41:666–669CrossRefGoogle Scholar
  21. 21.
    Kuo SY, Chen WC, Cheng CP (2006) Superlattices Microstruct 39:162–170CrossRefGoogle Scholar
  22. 22.
    Abou-Helal MO, Seeber WT (1997) J Non Cryst Solids 218:139–145CrossRefGoogle Scholar
  23. 23.
    Wu GS, Zhuang YL, Lin ZQ, Yuan XY, Xie T, Zhang LD (2006) Physica E 31:5–8CrossRefGoogle Scholar
  24. 24.
    Minami T, Yamamoto T, Miyata T (2000) Thin Solid Films 366:63–68CrossRefGoogle Scholar
  25. 25.
    Kaur R, Singh AV, Sehrawat K, Mehra NC, Mehra RM (2006) J Non Cryst Solids 352:2565–2568CrossRefGoogle Scholar
  26. 26.
    Kaur R, Singh AV, Mehra RM (2005) Physica Status Solidi A 202:1053–1059CrossRefGoogle Scholar
  27. 27.
    Yu Q, Fu W, Yu C, Yang H, Wei R, Sui Y, Liu S, Liu Z, Li M, Wang G, Shao C, Liu Y, Zou G (2007) J Phys D Appl Phys 40:5592–5597CrossRefGoogle Scholar
  28. 28.
    Hsieh PT, Chen YC, Kao KS, Lee MS, Cheng CC (2007) J Eur Ceram Soc 27:3815–3818CrossRefGoogle Scholar
  29. 29.
    Futsuhara M, Yoshioka K, Takai O (1998) Thin Solid Films 322:274–281CrossRefGoogle Scholar
  30. 30.
    Islam MN, Ghosh TB, Chopra KL, Acharya HN (1996) Thin Solid Films 280:20–25CrossRefGoogle Scholar
  31. 31.
    Kim YS, Tai WP, Shu SJ (2005) Thin Solid Films 491:153–160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Po-Tsung Hsieh
    • 1
  • Ricky Wen-Kuei Chuang
    • 1
    • 2
  • Chao-Qun Chang
    • 1
  • Chih-Ming Wang
    • 3
  • Shoou-Jinn Chang
    • 1
    • 2
  1. 1.Center for Micro/Nano Science and TechnologyNational Cheng Kung UniversityTainanTaiwan
  2. 2.Institute of Microelectronics, Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan
  3. 3.Department of Electrical EngineeringCheng Shiu UniversityKaohsiung CountyTaiwan

Personalised recommendations