Journal of Sol-Gel Science and Technology

, Volume 57, Issue 2, pp 149–156 | Cite as

Synthesis and morphology of Ba(Zr0.20Ti0.80)O3 powders obtained by sol–gel method

  • Xiaoyong Chen
  • Wei Cai
  • Chunlin Fu
  • Huaqiang Chen
  • Qiang Zhang
original paper


Barium zirconate titanate, Ba(Zr0.20Ti0.80)O3 (BZT) powders were prepared by sol–gel method. These powders were characterized by thermogravimetric and differential thermogravimetric analyses (TG-DTA), X-ray diffraction (XRD) and microcopy electron transmission (TEM). The decomposition of the precursors was monitored by TG-DTA. XRD patterns reveal that BZT powders heat treated at 800 °C present single phase with perovskite-type cubic structure. TEM micrographs were employed to estimate the average particle size of the BZT powders (≈ 20 nm). The results indicate that the particle size of the BZT powders increases with the increasing of the holding time and aging temperature. The low aging temperature can reduce the agglomeration of the nanopowders. Three polyalcohols were employed as surfactants in sol–gel method: butanol (BTOL), polyethylene glycol (PEG) and polyvinyl alcohol (PVA). It is noted that PEG has a better effect on reducing agglomeration of BZT powders than that of the BTOL and PVA.


Barium zirconate titanate Powder Sol–gel Nanometer 



This research is supported by the Science and Technology Research Project of Chongqing Education Commission, China (Grant No. KJ091416), the Key Project of Chinese Ministry of Education (Grant No. 209099) and the Program for Excellent Talents in Chongqing University of Science and Technology, China.


  1. 1.
    Li W, Xu ZJ, Chu RQ, Fu P, Hao JG (2009) J Alloys Compd 482:137–140CrossRefGoogle Scholar
  2. 2.
    Zhu XH, Zhang ZH, Zhu JM, Zhou SH, Liu ZG (2009) J Cryst Growth 311:2437–2442CrossRefGoogle Scholar
  3. 3.
    Maie H, Lee BI (2009) J Mater Sci Mater Electron 20:619–627CrossRefGoogle Scholar
  4. 4.
    Xu JB, Zhai JW, Yao X (2009) J Alloys Compd 467:567–571CrossRefGoogle Scholar
  5. 5.
    Wu L, Chure MC, Wu KK, Chang WC, Yang MJ, Liu WK, Wu MJ (2009) Ceram Int 35:957–960CrossRefGoogle Scholar
  6. 6.
    Kuang SJ, Tang XG, Li LY, Jiang YP, Liu QX (2009) Scr Mater 61:68–71CrossRefGoogle Scholar
  7. 7.
    Zhai JW, Gao C, Yao X, Xu ZK, Chen H (2008) Ceram Int 34:905–910CrossRefGoogle Scholar
  8. 8.
    Wang DY, Yun P, Wang Y, Chan HLW, Choy CL (2009) Thin Solid Films 517:2092–2098CrossRefGoogle Scholar
  9. 9.
    Cavalcante LS, Anicete-Santos M, Pontes FM, Souza IA, Santos LPS, Rosa ILV, Santos MRMC, Santos-Júnior LS, Leite ER, Longo E (2007) J Alloys Compd 437:269–273CrossRefGoogle Scholar
  10. 10.
    Marques LGA, Cavalcante LS, Simões AZ, Pontes FM, Santos-Júnior LS, Santos MRMC, Rosa ILV, Varela JA, Longo E (2007) Mater Chem Phys 105:293–297CrossRefGoogle Scholar
  11. 11.
    Zhai JW, Hu D, Yao X, Xu ZK, Chen H (2006) J Eur Ceram Soc 26:1917–1920CrossRefGoogle Scholar
  12. 12.
    Cavalcante LS, Anicete-Santos M, Sczancoski JC, Simões LGP, Santos MRMC, Varela JA, Pizani PS, Longo E (2008) J Phys Chem Solids 69:1782–1789CrossRefGoogle Scholar
  13. 13.
    Cai W, Fu CL, Gao JC, Chen HQ (2009) J Alloys Compd 480:870–873CrossRefGoogle Scholar
  14. 14.
    Mahajan S, Thakur OP, Bhattacharya DK, Sreenivas K (2009) J Am Ceram Soc 92:416–423CrossRefGoogle Scholar
  15. 15.
    Cai W, Fu CL, Gao JC, Deng XL (2009) J Mater Sci Mater Electron 21:317–325CrossRefGoogle Scholar
  16. 16.
    Ke SM, Fan HQ, Huang HT, Chan HLW (2008) Appl Phys Lett 93:112906CrossRefGoogle Scholar
  17. 17.
    Zheng P, Zhang JL, Shao SF, Tan YQ, Wang CL (2009) Appl Phys Lett 94:032902CrossRefGoogle Scholar
  18. 18.
    Tang XG, Wang J, Wang XX, Chan HLW (2004) Solid State Commun 131:163–168CrossRefGoogle Scholar
  19. 19.
    Rout SK, Cavalcante LS, Sczancoski JC, Badapanda T, Panigrahi S, Li MS, Longo E (2009) Physica B 404:3341–3347CrossRefGoogle Scholar
  20. 20.
    Cavalcante LS, Gurgel MFC, Simões AZ, Longo E, Varela JA, Joya MR, Pizani PS (2007) Appl Phys Lett 90:011901CrossRefGoogle Scholar
  21. 21.
    Cavalcante LS, Sczancoski JC, De Vicente FS, Frabbro MT, Siu LM, Varela JA, Longo E (2009) J Sol-Gel Sci Techn 49:35–46CrossRefGoogle Scholar
  22. 22.
    Xu JB, Gao C, Zhai JW, Yao X, Xue JQ, Huang ZM (2006) J Cryst Growth 291:130–134CrossRefGoogle Scholar
  23. 23.
    Cavalcante LS, Gurgel MFC, Paris EC, Simões AZ, Joya MR, Varela JA, Pizani PS, Longo E (2007) Acta Mater 55:6416–6426CrossRefGoogle Scholar
  24. 24.
    Liu AY, Xue JQ, Meng XG, Sun JL, Huang ZM, Chu JH (2008) Appl Surf Sci 254:5660–5663CrossRefGoogle Scholar
  25. 25.
    Badapanda T, Rout SK, Cavalcante LS, Bczancoski JC, Panigrahi S, Longo E, Li MS (2009) J Phys D Appl Phys 42:175414–175422CrossRefGoogle Scholar
  26. 26.
    Veith M, Mathur S, Lecerf N, Huch V, Decker T (2000) J Sol-Gel Sci Techn 17:145–158CrossRefGoogle Scholar
  27. 27.
    Tang XG, Chew KH, Chan HLW (2004) Acta Mater 52:5177–5183CrossRefGoogle Scholar
  28. 28.
    Lee BW, Cho SB (2005) J Eur Ceram Soc 25:2009–2012CrossRefGoogle Scholar
  29. 29.
    Outzourhit A, Raghni MAEl, Hafid ML (2005) J Alloys Compd 340:214–219CrossRefGoogle Scholar
  30. 30.
    Reddy SB, Rao KP, Rao MSR (2007) Scr Mater 57:591–594CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiaoyong Chen
    • 1
  • Wei Cai
    • 1
    • 2
  • Chunlin Fu
    • 1
  • Huaqiang Chen
    • 1
  • Qiang Zhang
    • 1
  1. 1.School of Metallurgical and Materials EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.College of Materials Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations