Journal of Sol-Gel Science and Technology

, Volume 57, Issue 1, pp 51–56 | Cite as

Hydrolysis behavior of a precursor for bridged polysilsesquioxane 1,4-bis(triethoxysilyl)benzene: a 29Si NMR study

  • Hitomi Saito
  • Yuki Nishio
  • Manabu Kobayashi
  • Yoshiyuki Sugahara
Original Paper


The hydrolysis behavior of 1,4-bis(triethoxysilyl)benzene (BTB), a precursor of bridged polysilsesquioxane, was investigated with high-resolution 29Si nuclear magnetic resonance (29Si NMR) spectroscopy at ambient temperature in a system with BTB:ethanol:water:HCl = 1:10:x:0.8 × 10−4 (x = 3, 6 or 9). Signals due to hydrolyzed triethoxysilyl groups as well as unhydrolyzed triethoxysilyl groups [−Si(OEt)3, −Si(OEt)2(OH), −Si(OEt)(OH)2 and −Si(OH)3 (OEt = OCH2CH3)] formed four sub-regions based on the number of hydroxyl groups bound to a silicon atom. In addition, one silicon environment influenced the other silicon environment by an intra-molecular interaction between two silicon atoms, and each sub-region for monomeric species thus contained four signals. Based on the development of signal intensity, it is revealed that one of the two triethoxysilyl groups in BTB is hydrolyzed preferentially. Thus, when a triethoxysilyl group is hydrolyzed, the −Si(OH) x (OEt)3−x (x = 1, 2) groups formed undergo further hydrolysis, which is opposite to the tendency expected from the hydrolysis behavior of organotrialkoxysilanes under acidic conditions.


Hydrolysis behavior Bridged polysilsesquioxane 29Si NMR Intra-molecular interaction 



This work was financially supported in part by the Global COE Program“Center for Practical Chemical Wisdom”by MEXT, Japan. The authors wish to express their sincere thanks to Dr. Toshimichi Shibue (Materials Characterization Central Laboratory at Waseda University) for his assistance for 29Si NMR measurements.

Supplementary material

10971_2010_2323_MOESM1_ESM.doc (111 kb)
Electronic Supplementary Material: The list of relative integrated intensities from A1 to D4. (DOC 111 kb)


  1. 1.
    Loy D, Shea K (1995) Chem Rev 95:1431–1442CrossRefGoogle Scholar
  2. 2.
    Corriu R (2000) Angew Chem Int Ed 39:1376–1398CrossRefGoogle Scholar
  3. 3.
    Dabrowski A, Barczak M (2007) Croat Chem Acta 80:367–380Google Scholar
  4. 4.
    Sanchez C, Rozes L, Ribot F, Laberty C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010) C R Chim 13:3–39CrossRefGoogle Scholar
  5. 5.
    Shea K, Loy D (2001) Chem Mater 13:3306–3319CrossRefGoogle Scholar
  6. 6.
    Shea K, Loy D, Webster O (1992) J Am Chem Soc 114:6700–6710CrossRefGoogle Scholar
  7. 7.
    Khiterer M, Loy D, Cornelius C, Fujimoto C, Small J, McIntire T, Shea K (2006) Chem Mater 18:3665–3673CrossRefGoogle Scholar
  8. 8.
    Khiterer M, Shea K (2007) Nano Lett 7:2684–2687CrossRefGoogle Scholar
  9. 9.
    Schmidt H, Scholze H, Kaiser A (1984) J Non-Cryst Solids 63:1–11CrossRefGoogle Scholar
  10. 10.
    Sakka S, Tanaka Y, Kokubo T (1986) J Non-Cryst Solids 82:24–30CrossRefGoogle Scholar
  11. 11.
    Brinker C, Scherer G (1990) Sol–gel science: the physics and chemistry of sol-gel processing. Academic Press, San DiegoGoogle Scholar
  12. 12.
    Khimich N (2004) Glass Phys Chem 30:430–442CrossRefGoogle Scholar
  13. 13.
    Tan B, Rankin S (2006) J Phys Chem B 110:22353–22364CrossRefGoogle Scholar
  14. 14.
    Sugahara Y, Okada S, Sato S, Kuroda K, Kato C (1994) J Non-Cryst Solids 167:21–28CrossRefGoogle Scholar
  15. 15.
    Sugahara Y, Okada S, Kuroda K, Kato C (1992) J Non-Cryst Solids 139:25–34CrossRefGoogle Scholar
  16. 16.
    Xu Y, Sun X, Wu D, Sun Y, Yang Y, Yuan H, Deng F, Wu Z (2007) J Solution Chem 36:327–344CrossRefGoogle Scholar
  17. 17.
    Corriu R, Moreau J, Thepot P, Man M (1992) Chem Mater 4:1217–1224CrossRefGoogle Scholar
  18. 18.
    Oviatt H, Shea K, Small J (1993) Chem Mater 5:943–950CrossRefGoogle Scholar
  19. 19.
    Loy D, Jamison G, Baugher B, Russick E, Assink R, Prabakar S, Shea K (1995) J Non-Cryst Solids 186:44–53CrossRefGoogle Scholar
  20. 20.
    Loy D, Baugher B, Baugher C, Schneider D, Rahimian K (2000) Chem Mater 12:3624–3632CrossRefGoogle Scholar
  21. 21.
    Monredon-Senani S, Bonhomme C, Ribot F, Babonneau F (2009) J Sol–Gel Sci Technol 50:152–157CrossRefGoogle Scholar
  22. 22.
    Babonneau F, Baccile N, Laurent G, Maquet J, Azais T, Gervais C, Bonhomme C (2010) C R Chim 13:58–68CrossRefGoogle Scholar
  23. 23.
    Babonneau F, Thorne K, Machenzie J (1989) Chem Mater 1:554–558CrossRefGoogle Scholar
  24. 24.
    Jermouni T, Smaihi M, Hovnanian N (1995) J Mater Chem 5:1203–1208CrossRefGoogle Scholar
  25. 25.
    Babonneau F, Maquet J, Livage J (1995) Chem Mater 7:1050–1052CrossRefGoogle Scholar
  26. 26.
    Alam T, Assink R, Loy D (1996) Chem Mater 8:2366–2374CrossRefGoogle Scholar
  27. 27.
    Prabakar S, Assink R, Raman N, Myers S, Brinker C (1996) J Non-Cryst Solids 202:53–60CrossRefGoogle Scholar
  28. 28.
    Sanchez J, Rankin S, McCormick A (1996) Ind Eng Chem Res 35:117–129CrossRefGoogle Scholar
  29. 29.
    Hoebbel D, Nacken M, Schmidt H (1998) J Sol–Gel Sci Technol 13:37–43CrossRefGoogle Scholar
  30. 30.
    Babonneau F, Maquet J (2000) Polyhedron 19:315–322CrossRefGoogle Scholar
  31. 31.
    Zhang Z, Gorman B, Dong H, Orozco-Teran R, Mueller D, Reidy R (2003) J Sol–Gel Sci Technol 28:159–165CrossRefGoogle Scholar
  32. 32.
    Oubaha M, Dubois M, Murphy B, Etienne P (2006) J Sol–Gel Sci Technol 38:111–119CrossRefGoogle Scholar
  33. 33.
    Castricum H, Sah A, Geenevasen J, Kreiter R, Blank D, Vente J, Elshof J (2008) J Sol–Gel Sci Technol 48:11–17CrossRefGoogle Scholar
  34. 34.
    Van Nieuwenhuyse P, Bounor-Legare V, Boisson F, Cassagnau P, Michel A (2008) J Non-Cryst Solids 354:1654–1663CrossRefGoogle Scholar
  35. 35.
    Loy D, Carpenter J, Alam T, Shaltout R, Dorhout P, Greaves J, Small J, Shea K (1999) J Am Chem Soc 121:5413–5425CrossRefGoogle Scholar
  36. 36.
    Myers S, Assink R, Loy D, Shea K (2000) J Chem Soc Perkin Trans 2:545–549Google Scholar
  37. 37.
    Shea K, Loy D (2001) Acc Chem Res 34:707–716CrossRefGoogle Scholar
  38. 38.
    Kozelj M, Vuk A, Jerman I, Orel B (2009) Sol Energy Mater Sol Cells 93:1733–1742CrossRefGoogle Scholar
  39. 39.
    Horn H, Marsmann H (1972) Makromol Chem 162:255–267CrossRefGoogle Scholar
  40. 40.
    Williams E, Cargioli J, Larochelle R (1976) J Organomet Chem 108:153–158CrossRefGoogle Scholar
  41. 41.
    Harris R, Robins M (1978) Polymer 19:1123–1132CrossRefGoogle Scholar
  42. 42.
    Sugahara Y, Inoue T, Kuroda K (1997) J Mater Chem 7:53–59CrossRefGoogle Scholar
  43. 43.
    Boonstra A, Baken J (1990) J Non-Cryst Solids 122:171–182CrossRefGoogle Scholar
  44. 44.
    Brinker C (1988) J Non-Cryst Solids 100:31–50CrossRefGoogle Scholar
  45. 45.
    Poul E, Osterholtz F (1985) Molecular characterization of composite interfaces. Plenum, New YorkGoogle Scholar
  46. 46.
    Hoffmann R (1971) Acc Chem Res 4:1CrossRefGoogle Scholar
  47. 47.
    Deschryver F, Declercq D, Depaemelaere S, Hermans E, Onkelinx A, Verhoeven J, Gelan J (1994) J Photochem Photobio A Chem 82:171–179CrossRefGoogle Scholar
  48. 48.
    Speiser S (1996) Chem Rev 96:1953–1976CrossRefGoogle Scholar
  49. 49.
    Imamura A, Sugiyama H, Orimoto Y, Aoki Y (1999) Int J Quantum Chem 74:761–768CrossRefGoogle Scholar
  50. 50.
    Orimoto Y, Aoki Y (2002) Int J Quantum Chem 86:456–467CrossRefGoogle Scholar
  51. 51.
    Nishimura Y, Kamada M, Ikegami M, Nagahata R, Arai T (2006) J Photochem Photobio A Chem 178:150–155CrossRefGoogle Scholar
  52. 52.
    Tang Z, Lei T, Wang J, Ma Y, Pei J (2010) J Org Chem 75:3644–3655CrossRefGoogle Scholar
  53. 53.
    Schleyer P, Kos A (1983) Tetrahedron 39:1141–1150CrossRefGoogle Scholar
  54. 54.
    Wierschke S, Chandrasekhar J, Jorgensen W (1985) J Am Chem Soc 107:1496–1500CrossRefGoogle Scholar
  55. 55.
    Siehl H, Muller T (1998) The chemistry of organic silicon compounds Part 1. Wiley, New YorkGoogle Scholar
  56. 56.
    Bassindale A, Taylor P (1989) The chemistry of organic silicon compounds Part 2. Wiley, New YorkGoogle Scholar
  57. 57.
    Yang W, Drueckhammer D (2001) J Am Chem Soc 123:11004–11009CrossRefGoogle Scholar
  58. 58.
    Scherer W, Sirsch P, Shorokhov D, McGrady G, Mason S, Gardiner M (2002) Chem Eur J 8:2324–2334CrossRefGoogle Scholar
  59. 59.
    Fifer N, White J (2005) Org Biomol Chem 3:1776–1780CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hitomi Saito
    • 1
  • Yuki Nishio
    • 1
  • Manabu Kobayashi
    • 1
  • Yoshiyuki Sugahara
    • 1
  1. 1.Department of Applied Chemistry, School of Advanced Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations