Journal of Sol-Gel Science and Technology

, Volume 57, Issue 1, pp 16–19 | Cite as

Synthesis and properties of delafossite CuAlO2 nanowires

  • Runwei Mo
  • Yi Liu
Original Paper


Ultra-long and uniform CuAlO2 nanowires were successfully synthesized within a porous anodic aluminum oxide template by means of sol–gel method at 900 °C. The results of X-Ray diffraction indicate that the obtained CuAlO2 nanowires have a single delafossite structure. The scanning electron microscopy and transmission electron microscopy show that the CuAlO2 nanowires have a uniform diameter with about 50 nm and a length up to 10 μm. Room-temperature photoluminescence measurement of nanowires exhibits an ultraviolet near-band-edge emission around 350 nm (3.54 eV).


CuAlO2 Nanowires AAO template Optical property 



This work was financially supported by the Doctor Fund of Guizhou University (Z065020) and the Graduate Innovation Fund of Guizhou University (2007013).


  1. 1.
    Zhao Y, Cao XY, Jiang L (2007) J Am Chem Soc 129:764CrossRefGoogle Scholar
  2. 2.
    Lin DD, Wu H, Pan W (2007) Adv Mater 19:3968CrossRefGoogle Scholar
  3. 3.
    Spallart MN, Pai SP, Pinto R (2007) Thin Solid Films 515:8641CrossRefGoogle Scholar
  4. 4.
    Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) Nature 389:939CrossRefGoogle Scholar
  5. 5.
    Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H, Hamada N (2000) J Appl Phys 88:4159CrossRefGoogle Scholar
  6. 6.
    Banejee AN, Maity R, Chattopadhyay KK (2004) Mater Lett 58:10CrossRefGoogle Scholar
  7. 7.
    Banarjee AN, Chattopadhyay KK (2005) J Appl Phys 97:084308CrossRefGoogle Scholar
  8. 8.
    Li G, Zhu XB, Lei HC, Jiang HF, Song WH, Yang ZR, Dai JM, Sun YP, Pan X, Dai SY (2010) J Sol-Gel Sci Technol 53:641CrossRefGoogle Scholar
  9. 9.
    Thomas G (1997) Nature (London) 389: 907Google Scholar
  10. 10.
    Töpfer J, Trari M, Doumerc JP (2007) Solid State Sci 9:236CrossRefGoogle Scholar
  11. 11.
    Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670CrossRefGoogle Scholar
  12. 12.
    Li D, Xia YN (2004) Adv Mater 16:1751Google Scholar
  13. 13.
    Han GY, Shi GQ (2007) J Appl Polym Sci 103:1490CrossRefGoogle Scholar
  14. 14.
    Huang CB, Chen SL, Lai CL, Reneker DH, Qiu H, Ye Y, Hou HQ (2006) Nanotechnology 17:1558CrossRefGoogle Scholar
  15. 15.
    He JH, Wu Y, Zuo WW (2005) Polymer 46:12637CrossRefGoogle Scholar
  16. 16.
    Ohta H, Orita M, Hirano M, Hosono H (2001) J Appl Phys 89:5720CrossRefGoogle Scholar
  17. 17.
    Lugue A, Marti A, Lopez N, Antolin E, Canovas E (2005) Appl Phys Lett 87:083505CrossRefGoogle Scholar
  18. 18.
    Deng ZH, Zhu XB, Tao RH, Dong WW, Fang XD (2007) Mater Lett 61:686CrossRefGoogle Scholar
  19. 19.
    Ingram BJ, Mason TO (2001) Phys Rev B 64:155114CrossRefGoogle Scholar
  20. 20.
    Jacob A, Parent C, Boutinaud P, Flem GL, Doumerc JP, Ammar A, Elazhari M, Elaatmani M (1997) Solid State Commun 103:529CrossRefGoogle Scholar
  21. 21.
    Shy JH, Tseng BH (2005) J Phys Chem Solids 66:2123CrossRefGoogle Scholar
  22. 22.
    Shy JH, Tseng BH (2008) J Phys Chem Solids 69:547CrossRefGoogle Scholar
  23. 23.
    Wang Y, Zhang LD, Liang CH, Wang GZ, Peng XS (2002) Chem Phys Lett 357:314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Chemical EngineeringGuizhou UniversityGuiyangChina
  2. 2.College of ScienceGuizhou UniversityGuiyangChina

Personalised recommendations