Journal of Sol-Gel Science and Technology

, Volume 56, Issue 3, pp 310–319 | Cite as

Polydimethylsiloxane/silica/titania composites prepared by solvent-free sol–gel technique

  • Mihaela Alexandru
  • Maria Cazacu
  • Alexandra Nistor
  • Valentina E. Musteata
  • Iuliana Stoica
  • Cristian Grigoras
  • Bogdan C. Simionescu
Original Paper


Composites based on polydimethylsiloxane incorporating silica and titania were prepared by mixing polydimethylsiloxane with proper oxides precursors, tetraethyl-orthosilicate and tetrabutyl-orthotitanate. In the presence of environmental humidity and in acid catalysis, hydrolysis/condensation processes take place with formation of oxides and concomitantly polymer crosslinking. Partial replacement of SiO2 in a polydimethylsiloxane/silica composite with titania (both generated in situ by sol–gel process) affects surface hydrophilicity (evaluated by dynamic contact angle), water vapor sorption ability (determined by dynamic vapor sorption) and thermal stability. The dielectric properties are also controlled by composition.


Composites Sol–gel technique Polysiloxanes Titania Silica 



This research was financially supported by European Regional Development Fund, Sectoral Operational Programme “Increase of Economic Competitiveness”, Priority Axis 2 (SOP IEC-A2-O2.1.2-2009-2, ID 570, COD SMIS-CSNR: 12473, Contract 129/2010-POLISILMET).


  1. 1.
    Schmidt H (1994) J Sol-Gel Sci Technol 1:217–231CrossRefGoogle Scholar
  2. 2.
    Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S (1997) Chem Mater 9:2354–2375CrossRefGoogle Scholar
  3. 3.
    Sanchez C, Julián B, Belleville P, Popall M (2005) J Mater Chem 15:3559–3592CrossRefGoogle Scholar
  4. 4.
    Shindou T, Katayama S, Yamada N, Kamiya K (2003) J Sol-Gel Sci Technol 27:15–21CrossRefGoogle Scholar
  5. 5.
    Hüsing N, Bauer J, Kalss G, Garnweitner G, Kickelbick G (2003) J Sol-Gel Sci Technol 26:73–76CrossRefGoogle Scholar
  6. 6.
    Fabes BD, Uhlmann DR (1990) J Am Ceram Soc 73:978–988CrossRefGoogle Scholar
  7. 7.
    Simionescu B, Aflori M, Olaru M (2009) Constr Build Mater 23:3426–3430CrossRefGoogle Scholar
  8. 8.
    Alexandru M, Cristea M, Cazacu M, Ioanid A, Simionescu BC (2009) Polym Compos 30:751–759CrossRefGoogle Scholar
  9. 9.
    Hu Y, Chung YJ, Mackenzie JD (1993) J Mater Sci 28:6549–6554CrossRefADSGoogle Scholar
  10. 10.
    Sun CC, Mark JE (1989) Polymer 30:104–106CrossRefGoogle Scholar
  11. 11.
    Mark JE, Pan SJ (1982) Macromol Rapid Commun 3:681–685CrossRefGoogle Scholar
  12. 12.
    Rajan GS, Sur GS, Mark JE, Schaefer DW, Beaucage G (2003) J Polym Sci Polym Phys 41:1897–1901CrossRefGoogle Scholar
  13. 13.
    Mark JE, Jiang C-Y, Tang M-Y (1984) Macromolecules 17:2613–2616CrossRefADSGoogle Scholar
  14. 14.
    Ning Y-P, Tang M-Y, Jiang C-Y, Mark JE, Roth WC (1984) J Appl Polym Sci 29:3209–3212CrossRefGoogle Scholar
  15. 15.
    Tang M-Y, Mark JE (1984) Macromolecules 17:2616–2619CrossRefADSGoogle Scholar
  16. 16.
    Ning Y-P, Mark JE (1985) J Appl Polym Sci 30:3519–3522CrossRefGoogle Scholar
  17. 17.
    Yamada N, Yoshinaga I, Katayama S (2000) J Sol-Gel Sci Technol 17:123–130CrossRefGoogle Scholar
  18. 18.
    Rojas-Cervantes ML, López-Peinado AJ, Martín-Aranda RM, Gómez-Serrano V (2003) Carbon 41:79–86CrossRefGoogle Scholar
  19. 19.
    Pẽna-Alonso R, Téllez L, Rubio J, Rubio F (2006) J Sol-Gel Sci Technol 38:133–145CrossRefGoogle Scholar
  20. 20.
    Enescu D, Hamciuc V, Timpu D, Harabagiu V, Simionescu BC (2008) J Optoelectron Adv M 10:1473–1477Google Scholar
  21. 21.
    Epure V, Hamciuc V, Pricop L, Pinteala M, Airinei A, Harabagiu V, Simionescu BC, Enescu D, Perichaud A (2007) High Perform Polym 19:270–282CrossRefGoogle Scholar
  22. 22.
    Racles C, Cazacu M, Ioanid A, Vlad A (2008) Macromol Rapid Commun 29:1527–1531CrossRefGoogle Scholar
  23. 23.
    Cazacu M, Ignat M, Vlad A, Alexandru M, Racles C, Zarnescu G (2009) Polym Int 58:745–751CrossRefGoogle Scholar
  24. 24.
    Cazacu M, Ignat M, Vlad A, Alexandru M, Zarnescu G (2010) Optoelectron Adv Mater Rapid Commun 4:349–351Google Scholar
  25. 25.
    Raileanu M, Crisan M, Dragan N, Crisan D, Galtayries A, Braileanu A, Ianculescu A, Teodorescu VS, Nitoi I, Anastasescu M (2009) J Sol-Gel Sci Technol 51:315–329CrossRefGoogle Scholar
  26. 26.
    Rubio F, Rubio J, Oteo JL (2000) J Sol-Gel Sci Technol 8:105–113CrossRefGoogle Scholar
  27. 27.
    Téllez L, Rubio J, Rubio F, Morales E, Oteo JL (2003) J Mater Sci 38:1773–1780CrossRefGoogle Scholar
  28. 28.
    Lantelme B, Dumon M, Mai C, Pascault JP (1996) J Non-Cryst Solids 194:63–71CrossRefADSGoogle Scholar
  29. 29.
    Lee B-S, Kang D-J, Kim S-G (2003) J Mater Sci 38:3545–3552CrossRefGoogle Scholar
  30. 30.
    Cazacu M, Marcu M (1995) Macromol Rep A 32:1019–1029CrossRefGoogle Scholar
  31. 31.
    Alexandru M, Cazacu M, Vlad S, Iacomi F (2009) High Perform Polym 21:379–392CrossRefGoogle Scholar
  32. 32.
    Dire S, Babonneau F, Sanchez C, Livage J (1992) J Mater Chem 2:239–244CrossRefGoogle Scholar
  33. 33.
    Pirson A, Mohsine A, Marchot P, Michaux B, Van Cantfortc O, Pirard JP (1995) J Sol-Gel Sci Technol 4:179–185CrossRefGoogle Scholar
  34. 34.
    Brusatin G, Guglielmi M, Innocenzi P, Martucci A, Battaglin G (1997) J Non-Cryst Solids 220:202–209CrossRefADSGoogle Scholar
  35. 35.
    Babonneau F (1994) Polyhedron 13:1123–1130CrossRefGoogle Scholar
  36. 36.
    Gu H, Bao DH, Wang SM, Gao DF, Kuang AX, Li XJ (1996) Thin Solid Films 283:81–83CrossRefADSGoogle Scholar
  37. 37.
    Noggin M (1985) J Non-Cryst Solids 69:415–423CrossRefADSGoogle Scholar
  38. 38.
    Murashkevich AN, Lavitskaya AS, Barannikova TI, Zharskii IM (2008) J Appl Spectro 75:730–734CrossRefGoogle Scholar
  39. 39.
    Kochkar H, Figueras F (1997) J Catal 171:420–430CrossRefGoogle Scholar
  40. 40.
    Ng E-P, Mintova S (2008) Microporous Mesoporous Mater 114:1–26CrossRefGoogle Scholar
  41. 41.
    Yang Y, Zhang H, Wang P, Zheng Q, Li J (2007) J Memb Sci 288:231–238CrossRefGoogle Scholar
  42. 42.
    Yeh K-Y, Chen L-J, Chang J-Y (2008) Langmuir 24:245–251CrossRefPubMedGoogle Scholar
  43. 43.
    Que W, Zhou Y, Lam YL, Chan YC, Kam CH (2001) J Sol-Gel Sci Technol 20:187–195CrossRefGoogle Scholar
  44. 44.
    Wang B-L, Hu L-L (2005) Mater Chem Phys 89:417–422CrossRefGoogle Scholar
  45. 45.
    Cazacu M, Vlad A, Alexandru M, Budrugeac P, Racles C, Iacomi F (2010) Polym Bull 64:421–434CrossRefGoogle Scholar
  46. 46.
    Chiang C-L, Ma C-CM (2004) Polym Degrad Stab 83:207–214CrossRefGoogle Scholar
  47. 47.
    Fraga AN, Frullloni E, de la Osa O, Kenny JM, Va′zquez A (2006) Polym Testing 25:181–187CrossRefGoogle Scholar
  48. 48.
    Li Y, Cordovez M, Karbhari VM (2003) Compos Part B 34:383–390CrossRefGoogle Scholar
  49. 49.
    Pethrick RA, Hayward D (2002) Prog Polym Sci 27:1983–2017CrossRefGoogle Scholar
  50. 50.
    Weast RC (ed) (1985) CRC handbook of chemistry and physics. CRC, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mihaela Alexandru
    • 1
  • Maria Cazacu
    • 1
  • Alexandra Nistor
    • 1
  • Valentina E. Musteata
    • 1
  • Iuliana Stoica
    • 1
  • Cristian Grigoras
    • 1
  • Bogdan C. Simionescu
    • 1
    • 2
  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania
  2. 2.Department of Natural and Synthetic Polymers“Gh. Asachi” Technical University of IasiIasiRomania

Personalised recommendations