Journal of Sol-Gel Science and Technology

, Volume 56, Issue 3, pp 287–299 | Cite as

Sol–gel derived mesoporous and microporous alumina membranes

  • Berna Topuz
  • Muhsin Çiftçioğlu
Original Paper


Stable polymeric and colloidal boehmite sols were prepared by sol–gel process through controlled hydrolysis/condensation reactions. The particle sizes of the colloidal sols were in the 12–25 nm range depending on the process parameters and about 2 nm for polymeric sols. The presence of a significant increase in the microporosity content of the heat treated polymeric membranes relative to the mesoporous colloidal membranes might make the design of thermally stable microporous alumina membranes with controlled pore structures possible. The phase structure evolution in the 600–800 °C range had shown that the crystallization of the gamma alumina in the amorphous matrix starts at about 800 °C. This indicated that the pore structure stability may be enhanced through processing up to this relatively high temperature in polymeric alumina derived unsupported membranes. The permeance values of the two and three layered colloidal alumina membranes were observed to be independent of pressure which implies that the dominant gas transport mechanism is Knudsen diffusion in these structures. This was also supported by the 2.8 nm BJH pore sizes of the colloidal membranes. The Knudsen diffusion equation derived permeances of the polymeric alumina membranes with thicknesses of about 300 nm were determined to be very close to the experimentally determined permeance values.


Sol–gel Alumina membranes Thermal stability Gas permeation 



The authors gratefully acknowledge the Middle East Technical University (METU) Central Laboratory for performing 27Al MAS-NMR characterization experiments. The authors thank the Centre for Materials Research at the İzmir Institute of Technology for XRD/SEM analysis.


  1. 1.
    Tsuru T (2008) J Sol Gel Sci Technol 46:349–361CrossRefGoogle Scholar
  2. 2.
    Brinker CJ, Ward TL, Sehgal R, Raman NK, Hietala SL, Smith DM, Hua D, Headley TJ (1993) J Membr Sci 77:165–179CrossRefGoogle Scholar
  3. 3.
    Boffa V, Castricum HL, Garcia R, Schmuhl R, Petukhov V, Blank DHA, ten Elshof JE (2009) Chem Mater 21:1822–1828CrossRefGoogle Scholar
  4. 4.
    Yoldas BE (1975) Ceram Bull 54(3):289–290Google Scholar
  5. 5.
    Anderson MA, Gieselmann MJ, Xu Q (1988) J Membr Sci 39:243–258CrossRefGoogle Scholar
  6. 6.
    Gu Y, Oyama ST (2007) J Membr Sci 306:216–327CrossRefGoogle Scholar
  7. 7.
    Shqau K, Mottern ML, Yu D, Verweij H (2006) J Am Ceram Soc 89(6):1790–1794CrossRefGoogle Scholar
  8. 8.
    Mallada R, Menendez M (2008) Inorganic membranes: synthesis, characterization and applications. Elsevier Science, NetherlandsGoogle Scholar
  9. 9.
    Yoshino Y, Suzuki T, Nair BN, Taguchi H, Itoh N (2005) J Membr Sci 267:8–17CrossRefGoogle Scholar
  10. 10.
    Gopalakrishnan S, Yoshino Y, Nomura M, Nair BN, Nakao J (2007) J Membr Sci 297:5–9CrossRefGoogle Scholar
  11. 11.
    Lin YS, Chang C-H, Gopalan R (1994) Ind Eng Chem Res 33:860–870CrossRefGoogle Scholar
  12. 12.
    Kuzniatsova T, Mottern ML, Shqau K, Yu D, Verweij H (2008) J Membr Sci 316(1–2):80–88CrossRefGoogle Scholar
  13. 13.
    Uhlhorn RJR, Huis In’t Veld MHBJ, Keizer K, Burggraaf AJ (1992) J Mater Sci 27:527–537CrossRefADSGoogle Scholar
  14. 14.
    Leenaars AFM, Keizer K, Burggraaf AJ (1984) J Mater Sci 19:1077–1088CrossRefADSGoogle Scholar
  15. 15.
    Uhlhorn RJR, Keizer K, Burggraaf AJ (1989) J Membr Sci 46:225–241CrossRefGoogle Scholar
  16. 16.
    Okubo T, Watanabe M, Kusakabe K, Morooko S (1990) J Mater Sci 25:4822–4827CrossRefADSGoogle Scholar
  17. 17.
    Yu C-Y, Sea B-K, Lee D-W, Park S-J, Lee K-Y, Lee K-H (2008) J Colloid Interface Sci 319(2):470–476CrossRefPubMedGoogle Scholar
  18. 18.
    Nijmeijer A, Kruidhof H, Bredesen R, Verweij H (2001) J Am Ceram Soc 84(1):136–140CrossRefGoogle Scholar
  19. 19.
    Lin Y-S, Burggraaf AJ (1991) J Am Ceram Soc 74(1):219–224CrossRefGoogle Scholar
  20. 20.
    Zahir MH, Sato K, Mori H, Iwamoto Y (2006) J Am Ceram Soc 89(9):2874–2880Google Scholar
  21. 21.
    Lafarga D, Lafuente A, Menendez M, Santamaria J (1998) J Membr Sci 147:173–185CrossRefGoogle Scholar
  22. 22.
    Keizer K, Uhlhorn RJR, Van Vuren RJ, Burggraaf AJ (1988) J Membr Sci 39:285–300CrossRefGoogle Scholar
  23. 23.
    Lee D, Zhang L, Oyama ST, Niu S, Saraf RF (2004) J Membr Sci 231:117–126CrossRefGoogle Scholar
  24. 24.
    Chen H-I, Shiau J-D, Chu C-Y, Huang T-C (2003) Sep Purif Tech 32:247–254CrossRefGoogle Scholar
  25. 25.
    Gu Y, Oyama ST (2007) Adv Mater 19:1636–1640CrossRefGoogle Scholar
  26. 26.
    Gu Y, Hacarlioglu P, Oyama ST (2008) J Membr Sci 310:28–37CrossRefGoogle Scholar
  27. 27.
    Topuz B, Ciftçioğlu M, Özkan F (2004) Key Eng Mater 264–268:399–402CrossRefGoogle Scholar
  28. 28.
    Topuz B (2009) PhD Thesis, İzmir Institute of Technology, İzmir, TurkeyGoogle Scholar
  29. 29.
    Burggraaf AJ, Cot L (1996) Fundamentals of inorganic membrane science and technology. Elsevier, AmsterdamGoogle Scholar
  30. 30.
    Gu Y, Meng G (1999) J Eur Ceram Soc 19:1961–1966CrossRefGoogle Scholar
  31. 31.
    Sanchez C, Livage J, Henry M, Babonneau F (1988) J Non Cryst Solids 100:65–76CrossRefADSGoogle Scholar
  32. 32.
    Lichtenberger R, Puchberger M, Baumann SO, Schubert U (2009) J Sol Gel Sci Technol 50:130–140CrossRefGoogle Scholar
  33. 33.
    Kessler VG, Spijksma GI, Seisenbaeva GA, Hakansson S, Blank DHA, Bouwmeester HJM (2006) J Sol Gel Sci Technol 40:163–179CrossRefGoogle Scholar
  34. 34.
    Jing C, Zhao X, Zhang Y (2007) Mater Res Bull 42(4):600–608CrossRefGoogle Scholar
  35. 35.
    Fu Q, Cao C-B, Zhu H-S (1999) Thin Solid Films 348:99–102CrossRefADSGoogle Scholar
  36. 36.
    Babonneau F, Coury L, Livage J (1990) J Non Cryst Solids 121:153–157CrossRefADSGoogle Scholar
  37. 37.
    Hernandez C, Pierre AC (2001) J Sol Gel Sci Technol 20:227–243CrossRefGoogle Scholar
  38. 38.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, BostonGoogle Scholar
  39. 39.
    Nazar LF, Klein LC (1988) J Am Ceram Soc 71(2):C85–C87CrossRefGoogle Scholar
  40. 40.
    Gonzalez-Pena V, Marquez-Alvarez C, Diaz I, Grande M, Blasco T, Perez-Pariente J (2005) Microporous Mesoporous Mater 80:173–182CrossRefGoogle Scholar
  41. 41.
    Kreiter R, Rietkerk MDA, Bonekamp BC, van Veen HM, Kessler VG, Vente JF (2008) J Sol Gel Sci Technol 48:203–211CrossRefGoogle Scholar
  42. 42.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and application. Academic Press, LondonGoogle Scholar
  43. 43.
    Alphonse P, Courty M (2005) J Colloid Interface Sci 290:208–219CrossRefPubMedGoogle Scholar
  44. 44.
    Spijksma GI, Huiskes C, Benes NE, Kruidhof H, Blank DHA, Kessler VG, Bouwmeester HJM (2006) Adv Mater 18:2165–2168CrossRefGoogle Scholar
  45. 45.
    de Lange RSA, Keizer K, Burggraaf AJ (1995) J Membr Sci 104:81–100CrossRefGoogle Scholar
  46. 46.
    Boffa V, ten Elshof JE, Garcia R, Blank DHA (2009) Microporous Mesoporous Mater 118(1–3):202–209CrossRefGoogle Scholar
  47. 47.
    Cho Y-K, Han K, Lee K-L (1995) J Membr Sci 104:219–230CrossRefGoogle Scholar
  48. 48.
    Lee H-J, Yamauchi H, Suda H, Haraya K (2006) Sep Purif Tech 49(1):49–55CrossRefGoogle Scholar
  49. 49.
    Kang BS, Hyun SH (1999) J Mater Sci 34:1391–1398CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Chemical Engineering Departmentİzmir Institute of TechnologyUrla, İzmirTurkey

Personalised recommendations