Journal of Sol-Gel Science and Technology

, Volume 56, Issue 3, pp 270–277 | Cite as

Size control of nanostructured silica using chitosan template and fractal geometry: effect of chitosan/silica ratio and aging temperature

  • Thongthai Witoon
  • Metta Chareonpanich
  • Jumras Limtrakul
Original Paper


The uses of low cost, renewable, environmentally friendly chitosan biopolymer as the structural template to control the size of silica particles in the range of nanometer scales are attractive for their practical industrial applications. In this paper, the nanostructured silica was synthesized using sodium silicate as the silica source and chitosan as the template under mild conditions. Effects of chitosan/silica ratio and aging temperature on the formation and the control of nanostructured silica was investigated by using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), N2-sorption measurement, and transmission electron microscopy (TEM). It was found that the silica products were composed of the aggregates of primary silica nanoparticles and nanostructured silica units. At low aging temperature, the size of nanostructured silica was decreased when increasing the chitosan/silica ratio from 0.1 to 0.4. In contrast, the reverse trend was observed at the chitosan/silica ratio of higher than 0.4. The increase of aging temperature led to the formation of larger primary silica nanoparticles and nanostructured silica, and also promoted the formation of silica/chitosan composites. The fractal dimension calculated using modified FHH method found the linear correlation at two different regimes which might reflect the aggregates of silica products at different length scales.


Chitosan concentration Aging temperature Fractal analysis Aggregates Nanostructured silica 



This work was financially supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0012/2548), the National Science and Technology Development Agency (NSTDA Chair Professor and NANOTEC Center of Excellence) under the Postgraduate Education, and Research Programs in Petroleum and Petrochemicals, and Advanced Materials.

Supplementary material

10971_2010_2303_MOESM1_ESM.doc (35 kb)
Supplementary material 1 (DOC 35 kb)


  1. 1.
    Iler RK (1979) The chemistry of silica. Wiley, New YorkGoogle Scholar
  2. 2.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol–gel processing. Academic Press, New YorkGoogle Scholar
  3. 3.
    Rolison DR (2003) Science 299:1698–1701CrossRefADSPubMedGoogle Scholar
  4. 4.
    Zhai SR, Ha CS (2007) Micropor Mesopor Mater 102:212–222CrossRefGoogle Scholar
  5. 5.
    Knecht MR, Sewell SL, Wright DW (2005) Langmuir 21:2058–2061CrossRefPubMedGoogle Scholar
  6. 6.
    Yang Y, Coradin T (2008) Green Chem 10:183–190CrossRefGoogle Scholar
  7. 7.
    Belton D, Paine G, Patwardhan SV, Perry CC (2004) J Mater Chem 14:2231–2241CrossRefGoogle Scholar
  8. 8.
    Patwardhan SV, Maheshwari R, Mukherjee N, Kiick KL, Clarson SJ (2006) Biomacromolecules 7:491–497CrossRefPubMedGoogle Scholar
  9. 9.
    Knecht MR, Wright DW (2004) Chem Mater 16:4890–4895CrossRefGoogle Scholar
  10. 10.
    Snyder MA, Lee JA, Davis TM, Scriven LE, Tsapatsis M (2007) Langmuir 23:9924–9928CrossRefPubMedGoogle Scholar
  11. 11.
    Li X, Yang T, Gao Q, Yuan J, Cheng S (2009) J Colloid Interface Sci 338:99–104CrossRefPubMedGoogle Scholar
  12. 12.
    Witoon T, Chareonpanich M, Limtrakul J (2009) J Sol–Gel Sci Technol 51:146–152CrossRefGoogle Scholar
  13. 13.
    Leng B, Chen X, Shao Z, Ming W (2008) Small 6:755–758CrossRefGoogle Scholar
  14. 14.
    Puchol V, El Haskouri J, Latorre J, Guillem C, Beltrán A, Beltrán D, Amorós P (2009) Chem Commun 19:2694–2696CrossRefGoogle Scholar
  15. 15.
    Pfeifer P, Liu KY, Rudzinski W, Steele WA, Zgrablich G (1997) Equilibria and dynamics of gas adsorption on heterogeneous solid surfaces. Elsevier, New YorkGoogle Scholar
  16. 16.
    Ismail IMK, Pfeifer P (1994) Langmuir 10:1532–1538CrossRefGoogle Scholar
  17. 17.
    Domard A, Domard M (2002) In: Dumitriu S (ed) Polymeric biomaterials, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  18. 18.
    Prouzet E, Boissière C, Kim SS, Pinnavaia TJ (2009) Micropor Mesopor Mater 119:9–17CrossRefGoogle Scholar
  19. 19.
    Meng F, Schlup JR, Fan LT (1998) J Colloid Interface Sci 197:88–93CrossRefPubMedGoogle Scholar
  20. 20.
    Balathanigaimani MS, Shim WG, Kim C, Lee JW, Moon H (2009) Surf Interface Anal 41:484–488CrossRefGoogle Scholar
  21. 21.
    Lee CK, Tsay CS (1998) J Phys Chem B 102:4123–4130CrossRefGoogle Scholar
  22. 22.
    Tang P, Chew NYK, Chan HK, Raper JA (2003) Langmuir 19:2632–2638CrossRefGoogle Scholar
  23. 23.
    Esquena J, Solans C, Llorens J (2000) J Colloid Interface Sci 225:291–298CrossRefPubMedGoogle Scholar
  24. 24.
    Pfeifer P, Avnir D (1983) J Chem Phys 79:3558–3565CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Avnir D, Farin D, Pfeifer P (1983) J Chem Phys 79:3566–3571CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Thongthai Witoon
    • 1
  • Metta Chareonpanich
    • 1
    • 2
  • Jumras Limtrakul
    • 2
    • 3
  1. 1.Department of Chemical Engineering, Faculty of EngineeringKasetsart UniversityBangkokThailand
  2. 2.Center of NanotechnologyKasetsart UniversityBangkokThailand
  3. 3.Department of Chemistry, Faculty of ScienceKasetsart UniversityBangkokThailand

Personalised recommendations