Journal of Sol-Gel Science and Technology

, Volume 56, Issue 1, pp 47–52 | Cite as

Preparation of superhydrophobic PET fabric from Al2O3–SiO2 hybrid: geometrical approach to create high contact angle surface from low contact angle materials

  • N. P. Damayanti
Original paper


In this work we prepare high contact Poly Ethylene Terephthalate (PET) fabric surface from low contact angle materials. Superhydrophobic PET fabric is prepared by coating the fabric with hybrid Al2O3–SiO2 sol. In this case, the high contact angle Al2O3–SiO2 hybrid is created from low contact angle Al2O3 and SiO2 precursors. PET treated with hybrid Al2O3–SiO2 exhibit Water Contact Angle (WCA) as 150°, while PET treated with individual Al2O3 sol or SiO2 sol exhibits lower WCA, (Al2O3 WCA = 137°; SiO2 WCA = 141°). FESEM and AFM investigations show that the hybrid Al2O3–SiO2 sol and individual Al2O3 or SiO2 sol imparted different roughness geometry on the PET fabric surface. We observe surface structure of fish fin-like, particle-like and hybrid fin-particle for treated PET fabric with; Al2O3, SiO2 and hybrid Al2O3–SiO2 sol, under FESEM and AFM observations.AFM observations show the evolution of roughness (Ra) dimension of different surface structures with the order of: SiO2 < Al2O3 < Al2O3–SiO2 (Ra = 31, 63 and 273 nm). We believe that the disparity of the surface geometries lead into different surface WCA. FTIR spectra of Hybrid Al2O3–SiO2 shows additional peak at 902, 850, 557, and 408 cm−1 which can be ascribed to the hybridization structure.


Superhydrophobic Hybrid SiO2–Al2O3 Hierarchical roughness 


  1. 1.
    Sakka S (2006) J Sol-Gel Sci Technol 37(2):135–140CrossRefMathSciNetGoogle Scholar
  2. 2.
    Hatta N, Araida Y, Tadakoro M (2006) US Patent 7,022,632 B2Google Scholar
  3. 3.
    Morita Y, Aso T, Furukawa H (2001) US patent 6,238, 745 B1Google Scholar
  4. 4.
    Tago T (1999) US patent 5,914,415Google Scholar
  5. 5.
    Ma M, Gupta M, Li Z, Zhai L, Gleason KK, Cohen RE, Rubner MF, Rutledge GC (2007) Adv Mater 19:159–255CrossRefGoogle Scholar
  6. 6.
    Kang M, Jung R, Kim HS, Jin HJ (2008) Colloids Surf A 313–314:411–414CrossRefGoogle Scholar
  7. 7.
    Taurino R, Fabbri E, Messori M, Pilatti F, Pospiech D, Synytska A, Colloid J (2008) Interface Sci 325:149–156Google Scholar
  8. 8.
    Yuyang Liu, a Jing Tang, b Ronghua Wang, a Haifeng Lu, Li Li, Yeeyee Kong, Kaihong Qia, Xina JH (2007) J Mater Chem 17:1071–1078Google Scholar
  9. 9.
    Xu Bi, Cai Zaisheng (2008) Appl Surf Sci 254:5899–5904CrossRefADSGoogle Scholar
  10. 10.
    Hoefnagels HF, Wu D, With G, Ming W (2007) Langmuir 23:13158–13163CrossRefPubMedGoogle Scholar
  11. 11.
    Xue CH, Jia ST, Zhang J, Tian LQ (2009) 517:4593–4598Google Scholar
  12. 12.
    Daoud W, Xin JH, Tao X (2004) J Am Ceram Soc 87(9):1782–1784CrossRefGoogle Scholar
  13. 13.
    Zimmermann J, Rabe M, Artus GRJ, Seeger S (2008) Soft Matter 4:450–452CrossRefGoogle Scholar
  14. 14.
    Mahltig B, Botcher H (2003) J Sol-Gel Sci Technol 27:43–52CrossRefGoogle Scholar
  15. 15.
    Satoh K, Nakzumi H, Morita M, Sol-Gel J (2003) Sci Technol 27:327–332Google Scholar
  16. 16.
    Geun BY, Byung GM, Young GJ, Sang CL, Jin JH, Gwang HK (2009) J Colloid Interface Sci. doi: 10.1016/j.jcis04.066
  17. 17.
    Yang C, Tartaglino U, Persson BNJ (2006) Phys Rev Lett 97:116103CrossRefADSPubMedGoogle Scholar
  18. 18.
    Nosonovsky M, Bhushan B (2008) Adv Funct Mater 18:843–855CrossRefGoogle Scholar
  19. 19.
    Li S, Xie H, Zhang S, Wang X (2007) 4857–4859Google Scholar
  20. 20.
    Dorrer C, Rühe J (2008) Adv Mater 20:159–163CrossRefGoogle Scholar
  21. 21.
    Tadanaga K, Katata N, Minami T (1997) J Am Ceram Soc 80(4):1040–1042CrossRefGoogle Scholar
  22. 22.
    Tadanaga K, Katata N, Minami T (1997) J Am Ceram Soc 80(12):3213–3216CrossRefGoogle Scholar
  23. 23.
    Wenzel RN (1936) Ind Eng Chem 28:988CrossRefGoogle Scholar
  24. 24.
    Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546CrossRefGoogle Scholar
  25. 25.
    Lafuma A, Quere D (2003) Superhydrophobic States. Nat Mater 2:457–460CrossRefADSPubMedGoogle Scholar
  26. 26.
    Tutejaa A, Choib W, Mabryc JM, McKinleyb GH, Cohen RE (2008) Proceeding of the National Academy of Science 105(47):18200–18205CrossRefADSGoogle Scholar
  27. 27.
    Zhang J, Sheng X, Jiang L (2009) Langmuir 25:1371–1376CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang BT, Liu BL, Deng XB, Cao SS, Hou XH, Chen HL (2008) Colloid Polym Sci 286:453–457CrossRefGoogle Scholar
  29. 29.
    Anindarupa SS, Weifeng C, Linan F, Zhaiw L (2008) J Am Ceram Soc 91(8):2751–2755CrossRefGoogle Scholar
  30. 30.
    Daoud WA, Xin JH, Tao X (2006) Appl Surf Sci 252:5368–5371CrossRefADSGoogle Scholar
  31. 31.
    Mahltig B, Audenaert F, Bottcher H, Sol-Gel J (2005) Sci Technol 34:103–109Google Scholar
  32. 32.
    Tadanaga K, Kitamuro K, Matsuda A, Minami T (2003) J Sol-Gel Sci Technol 26:705–708CrossRefGoogle Scholar
  33. 33.
    Hyde GK, Park KJ, Stewart SM, Hinestroza JP, Parsons GN (2007) Langmuir 23:9844–9849CrossRefPubMedGoogle Scholar
  34. 34.
    Kim D, Hwang W, Park HC, Lee K-H (2008) Curr Appl Phys 8:770–773CrossRefADSGoogle Scholar
  35. 35.
    Hosono E, Fujihara S, Honma I, Zhou H (2005) J Am Chem Soc 127:13458–13459CrossRefPubMedGoogle Scholar
  36. 36.
    Mahltig B, Haufe H, Bottcher H, Mater J (2005) Chem 5:4385–4398Google Scholar
  37. 37.
    Kulkarni SA, Ogale SB, Vijayamohanan KP, Colloid J (2008) Interface Sci 318:372–379Google Scholar
  38. 38.
    Rose D, Marier JR (1997) National research council of Canada NRC associate committee on scientific criteria for environmental quality 1997 ISSN 0316-0114Google Scholar
  39. 39.
    Nosonovsky M, Bhushan B (2005) Microsyst Technol 11:535–549CrossRefGoogle Scholar
  40. 40.
    Marmur A (2008) Langmuir 24:7573–7579CrossRefPubMedGoogle Scholar
  41. 41.
    Fortress F (1954) Silicone resins in textiles. Ind Chem Eng Res 46(11):2325–2331CrossRefGoogle Scholar
  42. 42.
    Hasan MMB, Calvimontes A, Dutschk V, Surfact J (2009) Deterg. doi: 10.1007/s11743-009-1130-x
  43. 43.
    Cheng YT, Rodak DE (2005) Appl Phys Lett 86:144011Google Scholar
  44. 44.
    Leea JY, Leeb SH, Kima SW (2000) Mater Chem Phys 63:251–255CrossRefGoogle Scholar
  45. 45.
    Neinhius C, Barthlott W (1997) 79:667–677Google Scholar
  46. 46.
    Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K (2002) Langmuir 18:5818–5822CrossRefGoogle Scholar
  47. 47.
    Marmur A (2003) Langmuir 19:8343–8348CrossRefGoogle Scholar
  48. 48.
    Wu LYL, Soutar AM, Zeng XT (2005) Sur Coat Technol 198:420–424CrossRefGoogle Scholar
  49. 49.
    Launer PJ (1987) “Infrared analysis of organosilicon compounds: spectra-structure correlations,” silicon compounds register and review. In: Arkles B (et al) (ed) Petrarch Systems, pp 100Google Scholar
  50. 50.
    Schubert U, Hüsing N, Laine R (2008) Materials syntheses: a practical guide. Springer, Wien, New York, p 50Google Scholar
  51. 51.
    Andradea AL, Marco RM, Maiab T, Lopesb MT, Edmundo C, Dominguesa SRZ (2004) Mater Res 7(4):635–638Google Scholar
  52. 52.
    Zhao G, Tohge N (1998) Mater Res 33(1):21–30CrossRefGoogle Scholar
  53. 53.
    Cavalu S, Simon V, Banica F, Deleanu C (2007) Romanian J Biophys 17(4):237–245Google Scholar
  54. 54.
    Jakobsson S (2002) Appl Spectrosc 56:6CrossRefGoogle Scholar
  55. 55.
    Fürj J, Gyollai I, Bérczi SZ, Gucsik A, Szekrénye ZS (2009) ”Infrared spectroscopy of shocked feldspars in lunar meteorites Yamato-86032 Regolith Breccia, and Asuka-881757 Lunar Labbro. In: Proceeding in the 32nd symposium on Antarctic Meteorites, June 3 and 4, 2009Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Polymer Materials Section, Department of Raw Materials and YarnsTaiwan Textile Research InstituteTucheng CityTaiwan, ROC

Personalised recommendations