Advertisement

Journal of Sol-Gel Science and Technology

, Volume 56, Issue 1, pp 33–38 | Cite as

The effects of the nanostructure of mesoporous TiO2 on optical band gap energy

  • Ying-Chieh Lee
  • Yee Shin Chang
  • Lay Gaik Teoh
  • Yi Lin Huang
  • Ya Chi Shen
Original Paper

Abstract

Mesoporous TiO2 is prepared by sol–gel process with a triblock copolymer as an organic template and aqueous TiOCl2 solution as inorganic precursor. The XRD patterns reveal that only the anatase phase can be observed in mesoporous TiO2, regardless of the different calcining temperatures, and with increasing calcining temperature the grain size gradually increases. The grain sizes of TiO2 increased from 4.7 to 11.9 nm with calcining temperature increasing from 300 to 400 °C. The pore size and the surface area evaluated from the Barrett–Joyner–Halenda model and Brunauer–Emmett–Teller method indicated that the average pore sizes increased from 87 to 153 Å and specific surface areas decreased from 179.71 to 74.31 m2/g for 300–400 °C calcination. The relationship between the optical band gap (E g) and microstructure of anatase has been determined and discussed. The quantum confinement effect is observed at grain sizes lower than 10 nm, and the estimated E g shifts from 3.32 to 3.46 eV. These results suggest that there are potential applications of mesostructured TiO2 with nanocrystals in the design of optical devices and photocatalysts.

Keywords

Mesoporous TiO2 Optical band gap Sol–gel 

Notes

Acknowledgments

This work was financially supported by the National Science Council of Taiwan, the Republic of China, grant No. NSC 97-2221-E-020-024 and NSC 98-2221-E-020-020, which are gratefully acknowledged.

References

  1. 1.
    Gratzel M (2001) J Sol-Gel Sci Technol 22:7CrossRefGoogle Scholar
  2. 2.
    Tanaka Y, Suganuma M (2001) J Sol-Gel Sci Technol 22:83CrossRefGoogle Scholar
  3. 3.
    Traversa E, Di Vona ML, Licoccia S, Sacerdoti M, Carotta MC, Crema L, Martinelli G (2001) J Sol-Gel Sci Technol 22:167CrossRefGoogle Scholar
  4. 4.
    Di Claudio D, Phani AR, Santucci S (2007) Opt Mater 30:279CrossRefADSGoogle Scholar
  5. 5.
    Li YZ, Lee N-H, Song JS, Lee EG, Kim S-J (2005) Res Chem Intermed 31:309CrossRefMATHGoogle Scholar
  6. 6.
    Kosacki I, Anderson HU (2000) Ionics 6:294CrossRefGoogle Scholar
  7. 7.
    Zhang WF, Zhang MS, Yin Z (2000) Physica Status Solidi (a) 179:319CrossRefADSGoogle Scholar
  8. 8.
    Peng HW, Li JB (2008) J Phys Chem C 112:20241CrossRefGoogle Scholar
  9. 9.
    Brus LE (1984) J Chem Phys 80:4403CrossRefADSGoogle Scholar
  10. 10.
    Brus LE (1986) J Phys Chem 90:2555CrossRefGoogle Scholar
  11. 11.
    Wang Y, Suna A, Mahler W, Kasowski R (1987) J Chem Phys 87:7315CrossRefADSGoogle Scholar
  12. 12.
    Stone VF, Davis RJ (1998) Chem Mater 10:1468CrossRefGoogle Scholar
  13. 13.
    Bosc F, Ayral A, Albouy P, Guizard C (2003) Chem Mater 15:2463CrossRefGoogle Scholar
  14. 14.
    Zhao LL, Yu Y, Song LX, Hu XF, Larbot A (2005) Appl Surf Sci 239:285CrossRefADSGoogle Scholar
  15. 15.
    Shioy Y, Ikeue K, Ogawa M, Anpo M (2003) Appl Catal A Gen 254:251CrossRefGoogle Scholar
  16. 16.
    Qi ZM, Honma I, Zhou H (2006) Appl Phys Lett 88:053503CrossRefADSGoogle Scholar
  17. 17.
    Vogel R, Meredith P, Kartini I, Harvey M, Riches JD, Bishop A, Heckenberg N, Trau M, Rubinsztein-Dunlop H (2003) Chem Phys Chem 4:595PubMedGoogle Scholar
  18. 18.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  19. 19.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefADSGoogle Scholar
  20. 20.
    Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, ReadingGoogle Scholar
  21. 21.
    Wang K, Morris MA, Holmes JD (2005) Chem Mater 17:1269CrossRefGoogle Scholar
  22. 22.
    Sinha AK, Suzuki K (2005) J Phys Chem B 109:1708CrossRefPubMedGoogle Scholar
  23. 23.
    Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, LondonGoogle Scholar
  24. 24.
    Reddy KM, Manorama SV, Reddy AR (2002) Mater Chem Phys 78:239CrossRefGoogle Scholar
  25. 25.
    Tian GL, He HB, Shao JD (2005) Chin Phy Lett 22:1787CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ying-Chieh Lee
    • 1
  • Yee Shin Chang
    • 2
  • Lay Gaik Teoh
    • 3
  • Yi Lin Huang
    • 3
  • Ya Chi Shen
    • 4
  1. 1.Department of Materials EngineeringNational Pingtung University of Science and TechnologyNeipu, PingtungTaiwan ROC
  2. 2.Department of Electronic EngineeringNational Formosa UniversityHuwei, YunlinTaiwan ROC
  3. 3.Department of Mechanical EngineeringNational Pingtung University of Science and TechnologyNeipu, PingtungTaiwan ROC
  4. 4.Center for General EducationNan Jeon Institute of TechnologyTainan HsienTaiwan ROC

Personalised recommendations