Advertisement

Journal of Sol-Gel Science and Technology

, Volume 56, Issue 1, pp 27–32 | Cite as

Preparation of ZrO2–SiO2 mixed oxide by combination of sol–gel and alcohol-aqueous heating method and its application in tetrahydrofuran polymerization

  • Yin Zhang
  • Li Pan
  • Chunguang Gao
  • Yongzhao Wang
  • Yongxiang Zhao
Original Paper

Abstract

Without using any acid or base catalyst, complexing agent or zirconium alkoxides, ZrO2–SiO2 mixed oxide with the ZrO2 content of 50 mol% was prepared by combination of sol–gel and alcohol-aqueous heating method using zirconyl nitrate and tetraethoxysilane as starting materials. The structural and surface acidic properties were characterized by FT-IR, XRD, NH3-TPD and pyridine adsorption FTIR. Compared with another mixed oxide with the same ZrO2 content prepared by mechanical grinding, the obtained ZrO2–SiO2 mixed oxide was homogeneously mixed in molecular level. The existed Zr–O–Si hetero-linkages strongly retarded the ZrO2 particle growth. The obtained mixed oxide maintained amorphous phase until it was calcined at 1,173 K for 3 h when crystallization of tetragonal zirconia took place. NH3-TPD and pyridine adsorption FTIR showed that both Brønsted and Lewis acidity were largely developed in the mixed oxide and most of the acidic sites belonged to the medium acidity. Because of the existence of abundant medium acidity, the mixed oxide showed catalytic activity for tetrahydrofuran polymerization. Furthermore, the produced poly tetramethylene ether glycol had moderate average molecular weight around 2,000. Neither the pure oxides nor the mixed oxide prepared by the mechanical grinding presented catalytic activity for this reaction.

Keywords

ZrO2–SiO2 mixed oxide Alcohol-aqueous heating method Tetrahydrofuran polymerization Pyridine adsorption FTIR 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation (NO. 20573071).

References

  1. 1.
    Rodríguez Avendaňo RG, De Los Reyes JA, Viveros T, Montoya De La Fuente JA (2009) Catal Today 148:12–18CrossRefGoogle Scholar
  2. 2.
    Chráska T, Hostomský J, Klementová M, Dubský J (2009) J Eur Ceram Soc 29:3159–3165CrossRefGoogle Scholar
  3. 3.
    Piascik JR, Swift EJ, Thompson JY, Grego S, Stoner BR (2009) Dent Mater 25:1116–1121CrossRefPubMedGoogle Scholar
  4. 4.
    Lopez T, Tzompantzi F, Navarrete J, Gomez R, Boldúy JL, Muňozy E, Novaroy O (1999) J Catal 181:285–293CrossRefGoogle Scholar
  5. 5.
    Miller JB, Ko EI (1996) J Catal 159:58–68CrossRefGoogle Scholar
  6. 6.
    Lopez T, Navarrete J, Gomez R, Novaro O, Figueras F, Armendariz H (1995) Appl Catal A 125:217–232CrossRefGoogle Scholar
  7. 7.
    Navío JA, Colón G, Macías M, Campelo JM, Romero AA, Marinas JM (1996) J Catal 161:605–613CrossRefGoogle Scholar
  8. 8.
    Palazzi C, Oliva L, Signoretto M, Strukul G (2000) J Catal 194:286–293CrossRefGoogle Scholar
  9. 9.
    Morandin M, Gavagnin R, Pinna F, Strukul G (2002) J Catal 212:193–200CrossRefGoogle Scholar
  10. 10.
    Rosenberg DJ, Coloma F, Anderson JA (2002) J Catal 210:218–228CrossRefGoogle Scholar
  11. 11.
    Flego C, Carluccio L, Rizzo C, Perego C (2001) Catal Commun 2:43–48CrossRefGoogle Scholar
  12. 12.
    Tarafdar A, Panda AB, Pramanik P (2005) Microporous Mesoporous Mater 84:223–228CrossRefGoogle Scholar
  13. 13.
    Kongwudthiti S, Praserthdam P, Tanakulrungsank W, Inoue M (2003) J Mater Process Technol 136:186–189CrossRefGoogle Scholar
  14. 14.
    Wang SW, Huang XX, Guo JK (1996) J Eur Ceram Soc 16:1057–1061CrossRefGoogle Scholar
  15. 15.
    Miranda-Salvado IM, Serna CJ, Fernandez-Navarro JM (1988) J Non-Cryst Solids 100:330–338CrossRefADSGoogle Scholar
  16. 16.
    Li W, Gao L (2001) Ceram Int 27:543–546CrossRefGoogle Scholar
  17. 17.
    Li W, Gao L, Guo JK (1998) Nanostruct Mater 10:1043–1049CrossRefGoogle Scholar
  18. 18.
    Wu ZG, Zhao YX, Xu LP, Liu DS (2003) J Non-Cryst Solids 330:274–277CrossRefADSGoogle Scholar
  19. 19.
    Rodrí guez-Castellón E, Jiménez-López A, Maireles-Torres P, Jones DJ, Rozière J, Trombetta M, Busca G, Lenarda M, Storaro L (2003) J Solid State Chem 175:159–169CrossRefADSGoogle Scholar
  20. 20.
    Zhan Z, Zeng HC (1999) J Non-Cryst Solids 243:26–38CrossRefADSGoogle Scholar
  21. 21.
    Anderson JA, Fergusson CA (1999) J Non-Cryst Solids 246:177–188CrossRefADSGoogle Scholar
  22. 22.
    Yang H, Lu R, Shen LC, Song LZ, Zhao JZ, Wang ZC, Wang L (2003) Mater Lett 57:2572–2579CrossRefGoogle Scholar
  23. 23.
    Sato S, Takahashi R, Sodesawa T, Tanaka S, Oguma K, Ogura K (2000) J Catal 196:190–194CrossRefGoogle Scholar
  24. 24.
    Aguilar DH, Torres-Gonzalez LC, Torres-Martinez LM, Lopez T, Quintana P (2000) J Solid State Chem 158:349–357CrossRefADSGoogle Scholar
  25. 25.
    Wang SW, Guo JK, Huang XX, Li BS (1995) Mater Lett 25:151–155CrossRefGoogle Scholar
  26. 26.
    Chandradass J, Han KS, Bae DS (2008) J Mater Process Technol 206:315–321CrossRefGoogle Scholar
  27. 27.
    Han YS, Yamanaka S (2006) J Solid State Chem 179:1146–1153CrossRefADSGoogle Scholar
  28. 28.
    Dang Z, Anderson PBG, Amenomiya Y, Morrow BA (1995) J Phys Chem 99:14437–14443CrossRefGoogle Scholar
  29. 29.
    Zhuang Q, Miller JM (2001) Appl Catal A 209:L1–L6CrossRefGoogle Scholar
  30. 30.
    Gomez R, Lopez T, Tzompantzi F, Garciafigueroa E, Acosta DW, Novaro O (1997) Langmuir 13:970–973CrossRefGoogle Scholar
  31. 31.
    Reddy BM, Khan A (2005) Catal Rev 47:257–296CrossRefGoogle Scholar
  32. 32.
    Setoyama T, Kobayashi M, Kabata Y, Kawai T, Nakanishi A (2002) Catal Today 73:29–37CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yin Zhang
    • 1
  • Li Pan
    • 1
  • Chunguang Gao
    • 1
  • Yongzhao Wang
    • 1
  • Yongxiang Zhao
    • 1
  1. 1.School of Chemistry & Chemical Engineering, Engineering Research Center of Ministry of Education for Fine ChemicalsShanxi UniversityTaiyuan, ShanxiPeople’s Republic of China

Personalised recommendations