Journal of Sol-Gel Science and Technology

, Volume 55, Issue 3, pp 343–347 | Cite as

Dielectric, ferroelectric and optical properties of BaZr0.2Ti0.8O3 thin films prepared by sol–gel-hydrothermal process

  • J. B. Xu
  • B. Shen
  • J. W. Zhai
Original Paper


BaZr0.2Ti0.8O3 thin films on Pt/Ti/SiO2/Si substrates have been fabricated under low temperature conditions by a sol–gel-hydrothermal technique. The dielectric constant is 247–83 in the frequency range of 1 kHz–1 MHz. The corresponding dielectric loss is ~10−2. The capacitance–voltage curve shows strong non-linear dielectric behavior leading to a high tunability, up to ~30% at 1 kHz. The remanent polarization and coercive field at room temperature are measured to be ~1.5 μC/cm2 and ~90 kV/cm. The infrared optical properties of the thin films are investigated using an infrared spectroscopic ellipsometry in the wave number range of 800–4,000 cm−1. Optical constants of the thin films are simultaneously obtained.


Thin films Low temperature technique Dielectric properties 



This research was supported by the Ministry of Sciences and Technology of China through a 973-project Grant No. 2009CB623302, Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP20060247003), and this work was supported by Shanghai Committee of Science and Technology (contract No. 07DZ22302).


  1. 1.
    Miao J, Yuan J, Wu H, Yang SB, Xu B, Cao LX, Zhao BR (2007) App Phys Lett 90:022903-3CrossRefADSGoogle Scholar
  2. 2.
    Zhong XL, Zheng XJ, Yang JT, Zhou YC (2004) J Cryst Growth 271:216–222CrossRefADSGoogle Scholar
  3. 3.
    Zhai JW, Hu D, Yao X, Xu ZK, Chen H (2006) J Eur Ceram Soc 26:1917–1920CrossRefGoogle Scholar
  4. 4.
    Zhai JW, Yao X, Shen B, Zhang LY, Chen HD (2003) J Electroceram 11:157–161CrossRefGoogle Scholar
  5. 5.
    Sakai Y, Futakuchi T, Iijima T, Adachi M (2005) Jpn J Appl Phys 44:3099–3102CrossRefADSGoogle Scholar
  6. 6.
    Futakuchi T, Sakai Y, Fujita N, Adachi M (2003) Jpn J Appl Phys 42:5904–5907CrossRefADSGoogle Scholar
  7. 7.
    Tanaka K, Suzuki K, Fu D, Nishizawa K, Miki T, Kato K (2004) Integr Ferroelectr 64:227–236CrossRefGoogle Scholar
  8. 8.
    Tanaka K, Suzuki K, Nishizawa K, Miki T, Kato K (2006) Jpn J Appl Phys 45:155–159CrossRefADSGoogle Scholar
  9. 9.
    Zhu W, Akbar SA, Asiaie R, Dutta PK (1998) J Electroceram 2:21–31CrossRefGoogle Scholar
  10. 10.
    Suchanek W, Watanabe T, Yoshimura M (1998) Solid State Ionics 109:65–72CrossRefGoogle Scholar
  11. 11.
    Calzada ML, Bretos I, Jimenez R, Guillon H, Pardo L (2004) Adv Mater 16:1620–1624CrossRefGoogle Scholar
  12. 12.
    Wu TB, Wu CM, Chen ML (1998) Thin Solid Films 334:77–81CrossRefADSGoogle Scholar
  13. 13.
    Cavalcante LS, Anicete-Santos M, Pontes FM, Souza IA, Santos LPS, Rosa ILV, Santos MRMC, Santos-Junior LS, Leite ER, Longo E (2007) J Alloy Compd 437:269–273CrossRefGoogle Scholar
  14. 14.
    Bacsa RR (1993) App Phys Lett 63:1053–1055CrossRefADSGoogle Scholar
  15. 15.
    Roeder RK, Slamovich EB (1999) J Am Ceram Soc 82:1665–1675CrossRefGoogle Scholar
  16. 16.
    Zeng JM, Lin CL, Li JH, Li K (1999) Mater Lett 38:112–115CrossRefGoogle Scholar
  17. 17.
    Xu JB, Gao C, Zhai JW, Yao X, Xue JQ, Huang ZM (2006) J Cryst Growth 291:130–134CrossRefADSGoogle Scholar
  18. 18.
    Joshi PC, Desu SB (1997) Thin Solid Films 300:289–294CrossRefADSGoogle Scholar
  19. 19.
    Zhai JW, Yao X, Zhang LY, Shen B (2004) App Phys Lett 84:3136–3138CrossRefADSGoogle Scholar
  20. 20.
    Choi WS, Jang BS, Roh Y, Yi JS, Hong BY (2002) J Non-Cryst Solids 303:190–193CrossRefGoogle Scholar
  21. 21.
    Zhai JW, Yao X, Shen J, Zhang LY, Chen H (2004) J Phys D Appl Phys 37:748–752CrossRefADSGoogle Scholar
  22. 22.
    Tang XG, Chan HLW, Ding AL (2004) Thin Solid Films 460:227–231CrossRefADSGoogle Scholar
  23. 23.
    Cheng WX, Ding AL, He XY, Zheng XS, Qiu PS (2006) J Electroceram 16:523–526CrossRefGoogle Scholar
  24. 24.
    Zhu XH, Li J, Zheng DN (2007) App Phys Lett 90:142913-3ADSGoogle Scholar
  25. 25.
    Xu JB, Zhai JW, Yao X, Xue JQ, Huang ZM (2007) J Sol–Gel Sci Technol 42:209–212CrossRefGoogle Scholar
  26. 26.
    Hennings DFK, Metzmacher C, Schreinemacher BS (2001) J Am Ceram Soc 84:179–182CrossRefGoogle Scholar
  27. 27.
    Shi EW, Xia CT, Zhong WZ, Wang BG, Feng CD (1997) J Am Ceram Soc 80:1567–1572CrossRefGoogle Scholar
  28. 28.
    McCormick MA, Slamovich EB (2003) J Eur Ceram Soc 23:2143–2152CrossRefGoogle Scholar
  29. 29.
    Dutta PK, Asiaie R, Akbar SA, Zhu WD (1994) Chem Mater 6:1542–1548CrossRefGoogle Scholar
  30. 30.
    Zhai JW, Hung TF, Chen HD (2004) App Phys Lett 85:2026–2028CrossRefADSGoogle Scholar
  31. 31.
    Huang ZM, Meng XJ, Yang PX, Zhang ZH, Chu JH (2000) App Phys Lett 76:3980–3982CrossRefADSGoogle Scholar
  32. 32.
    Hou Y, Huang ZM, Xue JQ, Wu YN, Shen XM, Chu JH (2005) App Phys Lett 86:112905-3CrossRefADSGoogle Scholar
  33. 33.
    Thomas R, Dube DC, Kamalasanan MN, Chandra S (1999) Thin Solid Films 346:212–225CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Functional Materials Research LaboratoryTongji UniversityShanghaiChina

Personalised recommendations