Skip to main content
Log in

Nanocomposites based on nickel ferrites dispersed in sol–gel silica matrices

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, we describe the effects of thermal treatments on the structural, morphological, and textural properties of nanocomposites formed by nickel ferrite dispersed in xerogel and aerogel silica matrices. The catalytic properties for the total oxidation of an organochloro model contaminant, the chlorobenzene, are also evaluated. Wet samples with different amounts of NiFe2O4 in matrix were prepared by sol–gel process. Xerogels and aerogels obtained in monolithic form were prepared by controlled and hypercritical drying, respectively, and heated at temperatures between 300 and 1,100°C. The specific surface area and total pore volume of the samples change with heating mainly due to the variation on their texture. The xerogel treated at 500°C and the aerogel treated at 700°C showed the most catalytic activity, converting chlorobenzene at temperatures as low as 150°C, while the other catalysts were active only at temperatures higher than 300°C. No organic by-products were observed in the oxidation of chlorobenzene, suggesting that total oxidation takes place under the reaction conditions. A strong decrease in catalytic activity was observed for nanocomposites treated at 1,100°C, due to matrix densification, which led to the encapsulation of the ferrite particles and hindered the access of the gas to the ferrite surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Komarneni S, Fregeau E, Breval E, Roy R (1998) J Am Ceram Soc 71(1):C26

    Google Scholar 

  2. Wang Z, Liu X, Lv M, Chai P, Liu Y, Meng J (2008) J Phys Chem B 112:11292

    Article  CAS  PubMed  Google Scholar 

  3. Giannakopoulou T, Kompotiatis L (2002) J Magn Magn Mater 246:360

    Article  CAS  ADS  Google Scholar 

  4. Morrish AH, Haneda K (1981) J Appl Phys 52(3):2496

    Article  CAS  ADS  Google Scholar 

  5. Sousa MH, Hasmonay E, Depeyrot J, Tourinho FA (2002) J Magn Magn Mater 242–245:572

    Article  Google Scholar 

  6. Jacobs P, Maltha A, Reintjes JGH, Drimal J, Ponec V, Brongersma HH (1994) J Catal 147:294

    Article  CAS  Google Scholar 

  7. Ramankutty CG, Sugunan S (2001) Appl Catal A 218:39

    Article  CAS  Google Scholar 

  8. Lee H, Jung JC, Kim H, Chung YM, Kim TJ, Lee SJ, Oh SH, Kim YS, Song I (2008) Catal Lett 124:364

    Article  CAS  Google Scholar 

  9. Ma LJ, Chen LS, Chen SY (2007) J Phys Chem Sol 68:1330

    Article  CAS  MathSciNet  ADS  Google Scholar 

  10. Hwang CS, Wang NC (2004) Mater Chem Phys 88:258

    Article  CAS  Google Scholar 

  11. Screekumar K, Raja T, Kiran BP, Sugunan S, Rao BS (1999) Appl Catal A 182:327

    Article  Google Scholar 

  12. Screekumar K, Mathew T, Devassy BM, Rajgopal R, Vetrivel R, Rao BS (2001) Appl Catal A 205:11

    Article  Google Scholar 

  13. Khedar MH, Omar AA, Abdel-Moaty SA (2006) Colloid Surf A 281:8

    Article  Google Scholar 

  14. Guin D, Baruwati B, Manorama SV (2005) J Mol A 242:26

    Article  CAS  Google Scholar 

  15. Rashad MM, Fouad OA (2005) Mater Chem Phys 94:365

    Article  CAS  Google Scholar 

  16. Manova E, Tsoncheva T, Paneva D, Rehspringer JL, Tenchev K, Mitov I, Petrov L (2007) Appl Catal A 317:34

    Article  CAS  Google Scholar 

  17. Silva JB, Mohallem NDS (2001) J Magn Magn Mater 232:572

    Google Scholar 

  18. Silva JB, Diniz CF, Viana APP, Mohallem NDS (2005) J Sol-Gel Sci Technol 35:115

    Article  CAS  Google Scholar 

  19. Cullity BD (1978) Elements of X-ray diffraction. Addison, California

    Google Scholar 

  20. Gregg SJ, Sing KSW (1997) Adsorption, surface area, and porosity. Academic Press Inc, New York

    Google Scholar 

  21. Lowell S, Shields JE (2005) Powder surface area and porosity. Chapman & Hall, New York

    Google Scholar 

  22. Liping L, Guangshe L, Smith RL Jr, Inomata H (2000) Chem Mater 12:3705–3714

    Article  Google Scholar 

  23. Silva JB, Diniz CF, Lago RM, Mohallem NDS (2004) J Non-Cryst Solids 348:201–204

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq and FAPEMIG (Brazilian funding agencies). The authors acknowledge the use of the infrastructure of the LMA/UFMG, the Center of Microscopy/UFMG and the help of their technicians.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelcy D. S. Mohallem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, J.B., Mohallem, N.D.S. Nanocomposites based on nickel ferrites dispersed in sol–gel silica matrices. J Sol-Gel Sci Technol 55, 159–169 (2010). https://doi.org/10.1007/s10971-010-2228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2228-3

Keywords

Navigation