Advertisement

Journal of Sol-Gel Science and Technology

, Volume 54, Issue 3, pp 347–354 | Cite as

An investigation of the microstructure, optical and electrical properties of ZITO thin film using the sol–gel method

  • K. J. Chen
  • F. Y. Hung
  • S. J. Chang
  • S. J. Young
  • Z. S. Hu
  • S. P. Chang
Original Paper

Abstract

The multi-compound ZITO transparent conductive oxide (TCO) thin films were synthesized using the sol–gel method. The ZITO thin films with various volume ratios of ZnO to ITO (1:1, 2:1 and 9:1) were crystallized at different temperatures (600–700 °C). The results showed that the crystalline characteristics and optical transmittance were mainly dependent on ITO content and crystallization. Notably, the 650 °C Z9ITO film not only had better conductivity but also possessed excellent optical transmittance. In addition, the surface roughness of the ZITO films and optoelectric properties of IZO (indium doped ZnO) films were analyzed to confirm the contribution of indium dopants on the optical transmittance. Also, the ZITO films were subjected to the effects of indium and tin dopants and this improved the related characteristics of ZnO films.

Keywords

ZnO Sol–gel ITO Crystallization 

Notes

Acknowledgments

The authors are grateful to National Cheng Kung University, the Center for Micro/Nano Science and Technology (D98-2700) and NSC 98-2221-E-006-068; NSC 98-2622-E-006-024-CC3 for the financial support.

References

  1. 1.
    Calnan S, Hüpkes J, Rech B, Siekmann H, Tiwari AN (2008) Thin Solid Films 516:1242–1245CrossRefADSGoogle Scholar
  2. 2.
    Dagamseh AMK, Vet B, Tichellaar FD, Sutta P, Zeman M (2008) Thin Solid Films 516:7844–7850CrossRefADSGoogle Scholar
  3. 3.
    Bae JH, Kim HK (2008) Thin Solid Films 516:7866–7870CrossRefADSGoogle Scholar
  4. 4.
    Park YS, Park HK, Cho SW, Jeong JA, Choi KH, Kim HK, Lee JY, Bae HD, Tak YH, Cho WJ (2008) Electrochem Solid State Lett 10:J85–J88CrossRefGoogle Scholar
  5. 5.
    Berry JJ, Ginley DS, Burrows PE (2008) Appl Phys Lett 92:193304CrossRefADSGoogle Scholar
  6. 6.
    Minami T (2008) Thin Solid Films 516:1314–1321CrossRefADSGoogle Scholar
  7. 7.
    Koida T, Fijiwara H, Kondo M (2007) J Appl Phys 46:L685–L687CrossRefADSGoogle Scholar
  8. 8.
    Okuya M, Ohashi K, Yamamoto T, Madarasz J (2008) Electrochemistry 76:132–135Google Scholar
  9. 9.
    Neumann B, Bierau F, Johnson B, Kaufmann CA, Ellmer K, Tributsch H (2008) Phys Stat Sol (B) 245:1849–1857CrossRefADSGoogle Scholar
  10. 10.
    Joshi US, Matsumoto Y, Itaka K, Sumiya M, Koinuma H (2006) Appl Surf Sci 252:2524–2528CrossRefADSGoogle Scholar
  11. 11.
    Sahu DR, Lin SY, Huang JL (2008) Thin Solid Films 516:4728–4732CrossRefADSGoogle Scholar
  12. 12.
    Faÿ S, Steinhauser J, Oliverira N, Sauvain EV, Ballif C (2007) Thin Solid Films 515:8558–8561CrossRefADSGoogle Scholar
  13. 13.
    Ahn BD, Oh SH, Lee CH, Kim GH, Kim HJ, Lee SY, Cryst J (2007) Growth 309:128–133CrossRefGoogle Scholar
  14. 14.
    Allah FK, Abé SY, Núñez CM, Khelil A, Cattin L, Morsli M, Bernède JC, Bougrine A, del Valle MA, Díaz FR (2007) Appl Surf Sci 253:9241–9247CrossRefADSGoogle Scholar
  15. 15.
    Wei L, Ruixin M, Wei S, Bo K, Zhongliang W (2008) Rare Metals 27:32–35CrossRefGoogle Scholar
  16. 16.
    Valle GG, Hammer P, Pulcinelli SH, Santilli CV (2004) J Euro Ceram Soc 24:1009–1013CrossRefGoogle Scholar
  17. 17.
    Luna-Arredondo EJ, Maldonado A, Asomoza R, Acosta DR, Meléndez-Lira MA, Olvera M de la L (2005) Thin Solid Films 490:132–136CrossRefADSGoogle Scholar
  18. 18.
    Shinde SS, Shinde PS, Bhosale CH, Rajpure KY (2008) J Phys D Appl Phys 41:105109CrossRefADSGoogle Scholar
  19. 19.
    Vaezi MR, Sadrnezhaad SK (2007) Mater Sci Eng B 141:23–27CrossRefGoogle Scholar
  20. 20.
    Caglar Y, Ilican S, Caglar M, Yakuphanoglu F (2007) Spectrochim Acta A 67:1113–1119CrossRefADSGoogle Scholar
  21. 21.
    Zhou HM, Yi DQ, Yu ZM, Xiao LR, Li J (2008) Thin Solid Films 515:6909–6914CrossRefADSGoogle Scholar
  22. 22.
    Lin JP, Wu JM (2008) Appl Phys Lett 92:134103CrossRefADSGoogle Scholar
  23. 23.
    Fathollahi V, Mohammadpour Amini M (2001) Mater Lett 50:235–239CrossRefGoogle Scholar
  24. 24.
    Yu Q, Yang H, Fu W, Chang L, Xu J, Yu C, Wei R, Du K, Zhu H, Li M, Zou G (2007) Thin Solid Films 515:3840–3843CrossRefADSGoogle Scholar
  25. 25.
    Biswas PK, De A, Dua LK, Chkoda L (2006) Appl Surf Sci 253:1953–1959CrossRefADSGoogle Scholar
  26. 26.
    Legnani C, Lima SAM, Oliverira HHS, Quirino WG, Machado R, Santos RMB, Davolos MR, Achete CA, Cremona M (2007) Thin Solid Films 516:193–197CrossRefADSGoogle Scholar
  27. 27.
    Minami T, Kakumu T, Shimokawa K, Takata S (1998) Thin Solid Films 317:318–321CrossRefADSGoogle Scholar
  28. 28.
    Ow-Yang CW, Yeom HY, Paine DC (2008) Thin Solid Films 516:3105–3111CrossRefADSGoogle Scholar
  29. 29.
    Tominaga K, Fukumoto H, Kondou K, Hayashi Y, Murai K, Moriag T, Nakabayashi I (2004) Vacuum 74:683–687CrossRefGoogle Scholar
  30. 30.
    Ryu SW, Hong JS, Kim ST, Yang JY, Ahn BC, Hong WP, Park SH, Kim HM, Kim JJ (2007) J Korean Phys Soc 50:1833–1837CrossRefGoogle Scholar
  31. 31.
    Ohyama M, Kozuka H, Toko T (1998) J Am Ceram Soc 81:1622–1632CrossRefGoogle Scholar
  32. 32.
    Kim SS, Choi SY, Park CG, Jin HW (1999) Thin Solid Films 347:155–160CrossRefADSGoogle Scholar
  33. 33.
    Tominaga K, Takao T, Fukushima A, Moriga T, Nakabayashi I (2002) Vacuum 66:505–509CrossRefGoogle Scholar
  34. 34.
    Cullity BD (1978) The elements of X-ray diffraction. Addison-Wesley, Reading, MA, p 102Google Scholar
  35. 35.
    Chen KJ, Hung FY, Chang SJ, Hu ZS (2009) Appl Surf Sci 255:6308–6312CrossRefADSGoogle Scholar
  36. 36.
    Chen KJ, Hung FY, Chang SJ, Young SJ (2009) Mater Trans 50:922–925CrossRefGoogle Scholar
  37. 37.
    Prathap P, Gowri Devi G, Subbaiah YPV, Ganesan V, Ramakrishna Reddy KT, Yi J (2008) Phys Stat Sol (a) 205:1947–1951CrossRefADSGoogle Scholar
  38. 38.
    Steinhauser J, Faÿ S, Oliverira N, Vallat-Sauvain E, Zimin D, Kroll U, Ballif C (2008) Phys Stat Sol (a) 205:1983–1987CrossRefADSGoogle Scholar
  39. 39.
    Als-Nielsen J, McMorrow D (2001) Elements of modern X-ray physics. John Wiley & Sons, New York, USAGoogle Scholar
  40. 40.
    Kang HS, Kang JS, Pang SS, Shim ES, Lee SY (2003) Mater Sci Eng B 102:313–316CrossRefGoogle Scholar
  41. 41.
    Lee JH, Park BO (2003) Thin Solid Films 426:94–99CrossRefADSGoogle Scholar
  42. 42.
    Smith RA (1978) Semiconductors, 2nd edn. Cambridge University Press, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • K. J. Chen
    • 1
  • F. Y. Hung
    • 2
  • S. J. Chang
    • 1
  • S. J. Young
    • 1
  • Z. S. Hu
    • 3
  • S. P. Chang
    • 1
  1. 1.Institute of Microelectronics & Department of Electrical Engineering, Center for Micro/Nano Science and EngineeringNational Cheng Kung UniversityTainan 701Taiwan
  2. 2.Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and EngineeringNational Cheng Kung UniversityTainan 701Taiwan
  3. 3.Institute of Electro-Optical Science and Engineering, Center for Micro/Nano Science and TechnologyNational Cheng Kung UniversityTainan 701Taiwan

Personalised recommendations