Skip to main content
Log in

An investigation of the microstructure, optical and electrical properties of ZITO thin film using the sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The multi-compound ZITO transparent conductive oxide (TCO) thin films were synthesized using the sol–gel method. The ZITO thin films with various volume ratios of ZnO to ITO (1:1, 2:1 and 9:1) were crystallized at different temperatures (600–700 °C). The results showed that the crystalline characteristics and optical transmittance were mainly dependent on ITO content and crystallization. Notably, the 650 °C Z9ITO film not only had better conductivity but also possessed excellent optical transmittance. In addition, the surface roughness of the ZITO films and optoelectric properties of IZO (indium doped ZnO) films were analyzed to confirm the contribution of indium dopants on the optical transmittance. Also, the ZITO films were subjected to the effects of indium and tin dopants and this improved the related characteristics of ZnO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Calnan S, Hüpkes J, Rech B, Siekmann H, Tiwari AN (2008) Thin Solid Films 516:1242–1245

    Article  CAS  ADS  Google Scholar 

  2. Dagamseh AMK, Vet B, Tichellaar FD, Sutta P, Zeman M (2008) Thin Solid Films 516:7844–7850

    Article  CAS  ADS  Google Scholar 

  3. Bae JH, Kim HK (2008) Thin Solid Films 516:7866–7870

    Article  CAS  ADS  Google Scholar 

  4. Park YS, Park HK, Cho SW, Jeong JA, Choi KH, Kim HK, Lee JY, Bae HD, Tak YH, Cho WJ (2008) Electrochem Solid State Lett 10:J85–J88

    Article  CAS  Google Scholar 

  5. Berry JJ, Ginley DS, Burrows PE (2008) Appl Phys Lett 92:193304

    Article  ADS  CAS  Google Scholar 

  6. Minami T (2008) Thin Solid Films 516:1314–1321

    Article  CAS  ADS  Google Scholar 

  7. Koida T, Fijiwara H, Kondo M (2007) J Appl Phys 46:L685–L687

    Article  CAS  ADS  Google Scholar 

  8. Okuya M, Ohashi K, Yamamoto T, Madarasz J (2008) Electrochemistry 76:132–135

    CAS  Google Scholar 

  9. Neumann B, Bierau F, Johnson B, Kaufmann CA, Ellmer K, Tributsch H (2008) Phys Stat Sol (B) 245:1849–1857

    Article  CAS  ADS  Google Scholar 

  10. Joshi US, Matsumoto Y, Itaka K, Sumiya M, Koinuma H (2006) Appl Surf Sci 252:2524–2528

    Article  CAS  ADS  Google Scholar 

  11. Sahu DR, Lin SY, Huang JL (2008) Thin Solid Films 516:4728–4732

    Article  CAS  ADS  Google Scholar 

  12. Faÿ S, Steinhauser J, Oliverira N, Sauvain EV, Ballif C (2007) Thin Solid Films 515:8558–8561

    Article  ADS  CAS  Google Scholar 

  13. Ahn BD, Oh SH, Lee CH, Kim GH, Kim HJ, Lee SY, Cryst J (2007) Growth 309:128–133

    Article  CAS  Google Scholar 

  14. Allah FK, Abé SY, Núñez CM, Khelil A, Cattin L, Morsli M, Bernède JC, Bougrine A, del Valle MA, Díaz FR (2007) Appl Surf Sci 253:9241–9247

    Article  CAS  ADS  Google Scholar 

  15. Wei L, Ruixin M, Wei S, Bo K, Zhongliang W (2008) Rare Metals 27:32–35

    Article  Google Scholar 

  16. Valle GG, Hammer P, Pulcinelli SH, Santilli CV (2004) J Euro Ceram Soc 24:1009–1013

    Article  CAS  Google Scholar 

  17. Luna-Arredondo EJ, Maldonado A, Asomoza R, Acosta DR, Meléndez-Lira MA, Olvera M de la L (2005) Thin Solid Films 490:132–136

    Article  CAS  ADS  Google Scholar 

  18. Shinde SS, Shinde PS, Bhosale CH, Rajpure KY (2008) J Phys D Appl Phys 41:105109

    Article  ADS  CAS  Google Scholar 

  19. Vaezi MR, Sadrnezhaad SK (2007) Mater Sci Eng B 141:23–27

    Article  CAS  Google Scholar 

  20. Caglar Y, Ilican S, Caglar M, Yakuphanoglu F (2007) Spectrochim Acta A 67:1113–1119

    Article  CAS  ADS  Google Scholar 

  21. Zhou HM, Yi DQ, Yu ZM, Xiao LR, Li J (2008) Thin Solid Films 515:6909–6914

    Article  ADS  CAS  Google Scholar 

  22. Lin JP, Wu JM (2008) Appl Phys Lett 92:134103

    Article  ADS  CAS  Google Scholar 

  23. Fathollahi V, Mohammadpour Amini M (2001) Mater Lett 50:235–239

    Article  CAS  Google Scholar 

  24. Yu Q, Yang H, Fu W, Chang L, Xu J, Yu C, Wei R, Du K, Zhu H, Li M, Zou G (2007) Thin Solid Films 515:3840–3843

    Article  CAS  ADS  Google Scholar 

  25. Biswas PK, De A, Dua LK, Chkoda L (2006) Appl Surf Sci 253:1953–1959

    Article  CAS  ADS  Google Scholar 

  26. Legnani C, Lima SAM, Oliverira HHS, Quirino WG, Machado R, Santos RMB, Davolos MR, Achete CA, Cremona M (2007) Thin Solid Films 516:193–197

    Article  CAS  ADS  Google Scholar 

  27. Minami T, Kakumu T, Shimokawa K, Takata S (1998) Thin Solid Films 317:318–321

    Article  CAS  ADS  Google Scholar 

  28. Ow-Yang CW, Yeom HY, Paine DC (2008) Thin Solid Films 516:3105–3111

    Article  CAS  ADS  Google Scholar 

  29. Tominaga K, Fukumoto H, Kondou K, Hayashi Y, Murai K, Moriag T, Nakabayashi I (2004) Vacuum 74:683–687

    Article  CAS  Google Scholar 

  30. Ryu SW, Hong JS, Kim ST, Yang JY, Ahn BC, Hong WP, Park SH, Kim HM, Kim JJ (2007) J Korean Phys Soc 50:1833–1837

    Article  CAS  Google Scholar 

  31. Ohyama M, Kozuka H, Toko T (1998) J Am Ceram Soc 81:1622–1632

    Article  CAS  Google Scholar 

  32. Kim SS, Choi SY, Park CG, Jin HW (1999) Thin Solid Films 347:155–160

    Article  CAS  ADS  Google Scholar 

  33. Tominaga K, Takao T, Fukushima A, Moriga T, Nakabayashi I (2002) Vacuum 66:505–509

    Article  CAS  Google Scholar 

  34. Cullity BD (1978) The elements of X-ray diffraction. Addison-Wesley, Reading, MA, p 102

    Google Scholar 

  35. Chen KJ, Hung FY, Chang SJ, Hu ZS (2009) Appl Surf Sci 255:6308–6312

    Article  CAS  ADS  Google Scholar 

  36. Chen KJ, Hung FY, Chang SJ, Young SJ (2009) Mater Trans 50:922–925

    Article  CAS  Google Scholar 

  37. Prathap P, Gowri Devi G, Subbaiah YPV, Ganesan V, Ramakrishna Reddy KT, Yi J (2008) Phys Stat Sol (a) 205:1947–1951

    Article  CAS  ADS  Google Scholar 

  38. Steinhauser J, Faÿ S, Oliverira N, Vallat-Sauvain E, Zimin D, Kroll U, Ballif C (2008) Phys Stat Sol (a) 205:1983–1987

    Article  CAS  ADS  Google Scholar 

  39. Als-Nielsen J, McMorrow D (2001) Elements of modern X-ray physics. John Wiley & Sons, New York, USA

    Google Scholar 

  40. Kang HS, Kang JS, Pang SS, Shim ES, Lee SY (2003) Mater Sci Eng B 102:313–316

    Article  CAS  Google Scholar 

  41. Lee JH, Park BO (2003) Thin Solid Films 426:94–99

    Article  CAS  ADS  Google Scholar 

  42. Smith RA (1978) Semiconductors, 2nd edn. Cambridge University Press, London

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to National Cheng Kung University, the Center for Micro/Nano Science and Technology (D98-2700) and NSC 98-2221-E-006-068; NSC 98-2622-E-006-024-CC3 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Y. Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K.J., Hung, F.Y., Chang, S.J. et al. An investigation of the microstructure, optical and electrical properties of ZITO thin film using the sol–gel method. J Sol-Gel Sci Technol 54, 347–354 (2010). https://doi.org/10.1007/s10971-010-2202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2202-0

Keywords

Navigation