Advertisement

Journal of Sol-Gel Science and Technology

, Volume 54, Issue 2, pp 188–194 | Cite as

Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor

  • Soo-Jin Park
  • George G. Chase
  • Kwang-Un Jeong
  • Hak Yong Kim
Original Paper

Abstract

Flexible mats of titania fibers are prepared by calcination of electrospun polyvinylpyrrolidone fibers containing titanium isopropoxide precursor. Structural investigation of the calcinated nanofibers by X-ray diffraction (XRD) and electron diffraction (ED) combined with the morphologies by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show the titania fibers, with an average diameter of 180 nm, were comprised of anatase and rutile crystals. The mechanical, chemical and thermal properties of the titania fiber mats are further investigated by the techniques of Instron mechanical tester, thermogravimetric analyzer (TGA), and Fourier transform infrared spectroscopy (FT-IR). The titania fiber mat prepared in this method exhibited a significant flexibility with 461 MPa Young’s modulus.

Keywords

Titania Nanofibers Electrospinning Flexibility 

Notes

Acknowledgments

This work was supported by Korean Ministry of Education, Science and Technology (Center for Healthcare Technology and Development, and KRF-2007-331-D00119) and Woongjin Chemical Company. We thank Mr. J.G. Kang for University Research Facility for taking high-quality TEM images.

References

  1. 1.
    Son WK, Cho D, Park WH (2006) Nanotechnology 17:439CrossRefADSGoogle Scholar
  2. 2.
    Zhao J, Jia C, Duan H, Li H, Xie E (2008) J Alloy Compd 461:447CrossRefGoogle Scholar
  3. 3.
    Zhao J, Yang X (2003) Build Environ 38:645CrossRefGoogle Scholar
  4. 4.
    Li Y, Hwang DS, Lee NH, Kim SJ (2005) Chem Phys Lett 404:25CrossRefADSGoogle Scholar
  5. 5.
    Demir MM, Gulgun MA, Menceloglu YZ, Erman B, Abramchuk SS, Makhaeva EE, Khokhlov AR, Matveeva VG, Sulman MG (2004) Macromolecules 37:1787CrossRefADSGoogle Scholar
  6. 6.
    Matsui T, Harada M, Ichihashi Y, Bando KK, Matsubayashi N, Toba M, Yoshimura Y (2005) Appl Catal A 286:249CrossRefGoogle Scholar
  7. 7.
    Wang H, Wang Y, Yang Y, Li X, Wang C (2009) Mater Res Bull 44:408CrossRefGoogle Scholar
  8. 8.
    Li D, Xia Y (2003) NanoLetters 3:555ADSGoogle Scholar
  9. 9.
    Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M, Wang F (2004) J Am Chem Soc 126:14943CrossRefPubMedGoogle Scholar
  10. 10.
    Jun YW, Casula MF, Sim JH, Kim SY, Cheon J, Alivisatos AP (2003) J Am Chem Soc 125:15981CrossRefPubMedGoogle Scholar
  11. 11.
    Wu JM, Han CS, Wen T (2006) Nanotechnology 17:105CrossRefADSGoogle Scholar
  12. 12.
    Tian ZR, Voight JA, Liu J, Mckenzie B, Xu H (2003) J Am Chem Soc 125:12384CrossRefPubMedGoogle Scholar
  13. 13.
    Li D, McCann JT, Xia Y, Marquez M (2006) J Am Chem Soc 89:1861Google Scholar
  14. 14.
    Takashi M, Masaru H, Yuichi I, Kyoko KB, Nobuyuki M, Makoto T, Yuji Y (2005) Appl Catal A 286:249CrossRefGoogle Scholar
  15. 15.
    Tekmen C, Suslu A, Cocen U (2008) Mater Lett 62:4470CrossRefGoogle Scholar
  16. 16.
    Park SJ, Bhargava S, Bender ET, Chase GG, Ramsier RD (2008) J Mater Res 23:1193CrossRefADSGoogle Scholar
  17. 17.
    Dharmaraj N, Park HC, Kim CH, Viswanathamurthi P, Kim HY (2006) Mater Res Bull 41:612CrossRefGoogle Scholar
  18. 18.
    Reneker D, Chase GG, Kataphinan W, Katta P, Flexible ceramic fibers and a process for making same, US Patent, 20080242178Google Scholar
  19. 19.
    Bender ET, Katta P, Chase GG, Ramsier RD (2006) Surf Interface Anal 38:1252CrossRefGoogle Scholar
  20. 20.
    Ding Y, Zhang P, Jiang Y, Xu F, Yin J, Zuo Y (2009) Mater Lett 63:34CrossRefGoogle Scholar
  21. 21.
    Lee SH, Tekmen C, Sigmund WM (2005) Mater Sci Eng A 398:77CrossRefGoogle Scholar
  22. 22.
    Bai J, Yang Q, Li M, Wang S, Zhang C, Li Y (2008) Mater Chem Phys 11:205CrossRefGoogle Scholar
  23. 23.
    Schmiers H, Friebel J, Streubel P, Hesse R, Kopsel R (1999) Carbon 37:1965CrossRefGoogle Scholar
  24. 24.
    Xu H, Liu X, Li M, Chen Z, Cui D, Jiang M, Meng X, Yu L, Wang C (2005) Mater Lett 59:1962CrossRefGoogle Scholar
  25. 25.
    Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Chem Mater 19:6536CrossRefGoogle Scholar
  26. 26.
    Ebrahimi F, Bourne GR, Kelly MS, Matthews TE (1999) Nanostruct Mater 11:343CrossRefGoogle Scholar
  27. 27.
    Lasalmonie A, Strudel JL (1986) J Mater Sci 21:1837CrossRefADSGoogle Scholar
  28. 28.
    Tan EPS, Lim CT (2006) Compos Sci Technol 66:1102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Healthcare Technology & Development and Department of Organic Materials and Fiber EngineeringChonbuk National UniversityJeonjuSouth Korea
  2. 2.Polymer Fusion Research Center and Department of Polymer-Nano Science and TechnologyChonbuk National UniversityJeonjuSouth Korea
  3. 3.Departments of Chemical and Biomolecular EngineeringThe University of AkronAkronUSA

Personalised recommendations