Journal of Sol-Gel Science and Technology

, Volume 54, Issue 1, pp 37–41 | Cite as

Synthesis on an ultra large scale of nearly monodispersed γ-Fe2O3 nanoparticles with La(III) doping through a sol–gel route assisted by propylene oxide

Original Paper


Nearly monodispersed La3+ doped γ-Fe2O3 nanoparticles were synthesized on an ultra-large scale of about 60 g in a single reaction by a low temperature sol–gel route. The nanoparticles were obtained by the reaction of FeCl2 and La(NO3)3 in ethanol solution with propylene oxide to form the sol, followed by the boiling of the sol solution. The La3+ doping promotes the phase transformation temperature of γ-Fe2O3 nanoparticles from 350 to 650 °C by the La3+ doping induced enhancement of phase transformation activation energy. This large scale synthesis strategy offers important advantages over other conventional routes for the preparation of undoped and doped γ-Fe2O3 nanoparticles. These guarantee the promising application of this route in the industrial production.


Sol–gel Doped γ-Fe2O3 Nanoparticles Phase transformation Large scale 



We gratefully acknowledge Rumeng Wang, Xuemin Li, Xiaojuan Wang and Chenglan Wu for their diligent work in the laboratory. This work is supported by National Natural Science Foundation of China (20971107) and Shandong Provincial Science and Technology Project (2006GG2206009).


  1. 1.
    Zayat M, Monte F, Morales MP, Rosa G, Guerrero H, Serna CJ, Levy D (2003) Adv Mater 15:1809CrossRefGoogle Scholar
  2. 2.
    Etgar L, Lifshitz E, Tannenbaum R (2007) J Phys Chem C 111:6238CrossRefGoogle Scholar
  3. 3.
    Sinha A, Chakraborty J, Rao V European Patent EP1559118Google Scholar
  4. 4.
    Billotey C, Wilhelm C, Devaud M, Bacrij C, Bittoun J, Gazeau F (2003) Magn Reson Med 49:646CrossRefPubMedGoogle Scholar
  5. 5.
    Ennas G, Marongiu G, Musinu A, Falqui A, Ballirano P, Caminiti R (1999) J Mater Res 14:1570CrossRefADSGoogle Scholar
  6. 6.
    Lai J, Shafi KVPM, Loos K, Ulman A, Lee Y, Vogt T, Estournès C (2003) J Am Chem Soc 125:11470CrossRefPubMedGoogle Scholar
  7. 7.
    Deka S, Joy PA (2007) J Mater Chem 17:453CrossRefGoogle Scholar
  8. 8.
    Ayub I, Berry FJ, Crabb E, Helgason Ö (2004) J Mater Sci 39:6921CrossRefADSGoogle Scholar
  9. 9.
    Wang HT, Hua NP, Du YK, Yang P (2005) Chem Res Appl 17:369Google Scholar
  10. 10.
    Jing ZH (2006) Mater Lett 60:3315CrossRefGoogle Scholar
  11. 11.
    Jing ZH, Wang Y, Wu SH (2006) Sensor Actuat B 113Google Scholar
  12. 12.
    Chakrabarti S, Mandal SK, Chaudhuri S (2005) Nanotechnology 16:506CrossRefADSGoogle Scholar
  13. 13.
    Cui HT, Zayat M, Parejo PG, Levy D (2008) Adv Mater 20:65CrossRefGoogle Scholar
  14. 14.
    Cui HT, Zayat M, Levy D (2009) J Nanopart Res 11:1331CrossRefGoogle Scholar
  15. 15.
    Cui HT, Zayat M, Levy D (2005) Chem Mater 17:5562CrossRefGoogle Scholar
  16. 16.
    Cui HT, Ren WZ (2008) J Sol-Gel Sci Technol 47:81CrossRefGoogle Scholar
  17. 17.
    Nair SS, Mathews M, Joy PA, Kulkarni SD, Anantharaman MR (2004) J Magn Magn Mater 283:344CrossRefADSGoogle Scholar
  18. 18.
    Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) J Am Chem Soc 123:12798CrossRefPubMedGoogle Scholar
  19. 19.
    Park J, An K, Hwang Y, Park J, HJ Noh, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nature Mater 3:891CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Chemistry and BiologyYantai UniversityYantaiChina

Personalised recommendations