Journal of Sol-Gel Science and Technology

, Volume 53, Issue 3, pp 551–554 | Cite as

Direct electrogeneration of FePt nanoparticles into highly ordered Inorganic NanoPattern stabilising membranes

  • Joachim Allouche
  • David Lantiat
  • Monika Kuemmel
  • Marco Faustini
  • Christel Laberty
  • Corrinne Chanéac
  • Elisabeth Tronc
  • Cédric Boissière
  • Lionel Nicole
  • Clément Sanchez
  • David Grosso
Original Paper


ZrO2 Inorganic NanoPatterns have been prepared on conductive electrodes by the direct block copolymer templating method associated with sol–gel dip-coating followed by thermal treatment. They have then been successfully utilised to direct the co-electrodeposition of FePt nanoparticles into the 2D well-ordered arrays of nanoelectrodes with controlled dimension and periodicity. By this method, the FePt nanodomains are confined and stabilised into the well-ordered cavities of the ZrO2 membrane. While this system constitutes the first steps towards high-density magnetic storage media, the present fully bottom-up method can be easily scaled up and generalised to infinite nanocomposite combinations.


Nanopattern Coelectrodeposition FePt Nanoelectrodes Data storage 



The authors greatly aknowledge the LRS laboratory (University Paris VI) for XPS analysis, and C-nano IdF (MAPERFID) and the European Communnity (Projet TERRAMAGSTORE) for funding.


  1. 1.
    Saado Y, Golosovsky T, Ji M, Davidov D, Avni Y, Frenkel A (2001) Opt Mater 17:1CrossRefADSGoogle Scholar
  2. 2.
    Zhang Q, Dang C, Urabe H, Wang J, Sun S, Nurmikko A (2008) Opt Express 16:19592CrossRefPubMedADSGoogle Scholar
  3. 3.
    Lewis S, Wheeler-Jones R, Haynes V, Perks R (2008) Microelectron Eng 85:486CrossRefGoogle Scholar
  4. 4.
    Fendler JH (2001) Chem Mater 13:3196CrossRefGoogle Scholar
  5. 5.
    Lidgi-Guigui CDN (2007) Adv Mater 19:1729CrossRefGoogle Scholar
  6. 6.
    Xu Y, Yan M, Sellmyer D (2007) J Nanosci Nanotechnol 7:206PubMedGoogle Scholar
  7. 7.
    Hernandez Creus A, Gimeno Y, Diaz P, Vazquez L, Gonzalez S, Salvarezza RC, Arvia AJ (2004) J Phys Chem B 108:10785CrossRefGoogle Scholar
  8. 8.
    Xu X, Zhuang J, Wang X (2008) J Am Chem Soc 130:12527CrossRefPubMedGoogle Scholar
  9. 9.
    Li H, Luo X, Du C, Chen X, Fu Y (2008) Sens Actuators B Chem 134:940CrossRefGoogle Scholar
  10. 10.
    Somorjai G, Park J (2008) Topics Catal 49:126CrossRefGoogle Scholar
  11. 11.
    Du Y, Su B, Zhang N, Wang C (2008) Appl Surf Sci 255:2641CrossRefADSGoogle Scholar
  12. 12.
    Zoval JV, Stiger RM, Biernacki PR, Penner RM (1996) J Phys Chem 100:837CrossRefGoogle Scholar
  13. 13.
    Ortega JM (2000) Thin Solid Films 360:159CrossRefADSGoogle Scholar
  14. 14.
    Afshar A, Dolati AG, Ghorbani M (2002) Mater Chem Phys 77:352CrossRefGoogle Scholar
  15. 15.
    Peulon S, Antony H, Legrand L, Chausse A (2004) Electrochim Acta 49:2891CrossRefGoogle Scholar
  16. 16.
    Yang M, Hu H (2005) J Electroanal Chem 583:46CrossRefGoogle Scholar
  17. 17.
    Diaz-Arista P, Meas Y, Ortega R, Trejo G (2005) J Appl Electrochem 35:217CrossRefGoogle Scholar
  18. 18.
    Welch CM, Compton RG (2006) Anal Bioanal Chem 384:601CrossRefPubMedGoogle Scholar
  19. 19.
    Bento FR, Mascaro LH (2006) Surf Coat Technol 201:1752CrossRefGoogle Scholar
  20. 20.
    Yang ZN, Zhang Z, Zhang JQ (2006) Surf Coat Technol 200:4810CrossRefGoogle Scholar
  21. 21.
    Huang YH, Okumura H, Weller D, Hadjipanayis GC (2002) J Appl Phys 91:6869CrossRefADSGoogle Scholar
  22. 22.
    Cagnon L, Dahmane Y, Voiron J, Pairis S, Bacia M, Ortega L, Benbrahim N, Kadri A (2007) J Magn Magn Mater 310:2428CrossRefADSGoogle Scholar
  23. 23.
    Wang H, Jia E, Zhang L, Li L, Li M (2008) Phys Lett A 372:5712CrossRefADSGoogle Scholar
  24. 24.
    Wang F, Hosoiri K, Doi S, Okamoto N, Kuzushima T, Totsuka T, Watanabe T (2004) Electrochem Commun 6:1149CrossRefGoogle Scholar
  25. 25.
    Leistner K, Thomas J, Baunack S, Schlörb H, Schultz L, Fähler S (2005) J Magn Magn Mater 290:1270CrossRefADSGoogle Scholar
  26. 26.
    Leistner K, Fähler S, Schlörb H, Schultz L (2006) Electrochem Commun 8:916CrossRefGoogle Scholar
  27. 27.
    Wang Y, Ding B, Li H, Zhang X, Cai B, Zhang Y (2007) J Magn Magn Mater 308:108CrossRefADSGoogle Scholar
  28. 28.
    Thongmee S, Ding J, Lin JY, Blackwood DJ, Yi JB, Yin JH (2007) J Appl Phys 101:09K519-1CrossRefGoogle Scholar
  29. 29.
    Kuemmel M, Allouche J, Nicole L, Boissière C, Laberty C, Amenitsch H, Sanchez C, Grosso D (2007) Chem Mater 19:3717CrossRefGoogle Scholar
  30. 30.
    Laberty-Robert C, Kuemmel M, Allouche J, Boissière C, Nicole L, Grosso D, Sanchez C (2008) J Mater Chem 18:1216CrossRefGoogle Scholar
  31. 31.
    Scharifker B, Hills G (1983) Electrochim Acta 28:879CrossRefGoogle Scholar
  32. 32.
    Scharifker B, Mostany J (1984) J Electroanal Chem 177:13CrossRefGoogle Scholar
  33. 33.
    Valizadeh S, George JM, Leisner P, Hultman L (2001) Electrochim Acta 47:865CrossRefGoogle Scholar
  34. 34.
    Caban K (2008) J Solid State Electrochem 14:32Google Scholar
  35. 35.
    Hüfner S, Wertheim GK (1975) Phys Rev B 11:678CrossRefADSGoogle Scholar
  36. 36.
    Prabhuram J, Wang X, Hui CL, Hsing I (2003) J Phys Chem B 107:11057CrossRefGoogle Scholar
  37. 37.
    Boyen H-G, Fauth K, Stahl B, Ziemann P, Kästle G, Weigl F, Banhart F, Hessler M, Schütz G, Gajbhiye NS, Ellrich J, Hahn H, Büttner M, Garnier MG, Oelhafen P (2005) Adv Mater 17:574CrossRefGoogle Scholar
  38. 38.
    Shavel BRA, Rodriguez-Gonzalez B, Spasova M, Farle M, Liz-Marzán LM (2007) Adv Funct Mater 17:3870CrossRefGoogle Scholar
  39. 39.
    Sun S, Anders S, Hamann HF, Thiele J, Baglin JEE, Thomson T, Fullerton EE, Murray CB, Terris BD (2002) J Am Chem Soc 124:2884CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joachim Allouche
    • 1
  • David Lantiat
    • 1
  • Monika Kuemmel
    • 1
  • Marco Faustini
    • 1
  • Christel Laberty
    • 1
  • Corrinne Chanéac
    • 1
  • Elisabeth Tronc
    • 1
  • Cédric Boissière
    • 1
  • Lionel Nicole
    • 1
  • Clément Sanchez
    • 1
  • David Grosso
    • 1
  1. 1.Laboratoire Chimie de la Matière Condensée de Paris, UMR UPMC-CNRS 7574Université Pierre et Marie Curie (Paris 6)Paris Cedex 05France

Personalised recommendations