Journal of Sol-Gel Science and Technology

, Volume 57, Issue 3, pp 236–244 | Cite as

X-rays to study, induce, and pattern structures in sol–gel materials

  • Paolo Falcaro
  • Plinio Innocenzi
Original Paper


X-rays investigations have been shown to reveal important information regarding material features and the formation mechanism of mesostructured materials. Small angle X-ray scattering (SAXS) analysis performed using a synchrotron source has been very important in the optimization of the organization of mesoporous coatings obtained by evaporation induced self-assembly (EISA). The interaction between X-rays and ordered mesoporous films has only recently been reported, and new knowledge has been developed to use this external radiation source to tune the local material properties. Here we discuss the recent developments in X-ray lithography combined with sol–gel synthesis to pattern mesostructured and hierarchical porous coatings including the ability to tailor functionalized surfaces.


Sol–gel X-ray SAXS DXRL Lithography Synchrotron Patterning Mesoporous Surface functionalisation Microelectronic Microfluidic Microarray Thin films 



Anita Hill, Heinz Amenitsch, Luca Malfatti, Stefano Costacurta, Masahide Takahashi, Tongjit Kidchob, David Grosso, Galo Soler-Illia, Chris Barbe, Benedetta Marmiroli, Piero Schiavuta, Alessandro Patelli, Simone Vezzù, Paolo Scopece, Dario Buso, Massimo Guglielmi, Diego Bassett, Emile Knistautas, Fernando Cacho, Michele Rossi, Michele Ingrassi, Laura Villanova and Paolo Rech are acknowledged for helpful discussions and advice during the project. CIVEN is acknowledged for supporting characterizations (contact angle, laser scanner, optical profilometer and atomic force microscopy). The CSIRO OCE Science Leader Scheme is acknowledged for supporting this work.


  1. 1.
    Doshi AD, Gibaud A, Goletto V, Lu M, Gerund H, Ocko B, Han SM, Brinker CJ (2003) J Am Chem Soc 125:11646CrossRefGoogle Scholar
  2. 2.
    Falcaro P, Grosso D, Amenitsch H, Innocenzi P (2004) J Phys Chem B 108:10942CrossRefGoogle Scholar
  3. 3.
    Innocenzi P, Malfatti L, Kidchob T, Falcaro P, Costacurta S, Guglielmi M, Mattei G, Amenitsch H (2005) J Sync Rad 12–6:734CrossRefGoogle Scholar
  4. 4.
    Urade VN, Bollmann L, Kowalski JD, Tate MP, Hillouse HW (2007) Langmuir 23:4268CrossRefGoogle Scholar
  5. 5.
    Tate MP, Eggiman BW, Kowalski JD, Hillouse HW (2005) Langmuir 21:10112CrossRefGoogle Scholar
  6. 6.
    Tate MP, Urade VN, Kowalski JD, Wei TW, Hamilton BD, Eggiman BW, Hillouse HW (2006) J Phys Chem B 110–20:9882CrossRefGoogle Scholar
  7. 7.
    Tate MP, Hillouse HW (2007) J Phys Chem C 111:7645CrossRefGoogle Scholar
  8. 8.
    Eggiman BW, Tate MP, Hillhouse HU (2006) Chem Mater 18:723CrossRefGoogle Scholar
  9. 9.
    Innocenzi P, Falcaro P, Schergna S, Maggini M, Menna E, Amenitsch H, Grosso D, Soler A, Illia A, Sanchez G (2004) J Mater Chem 14:1838CrossRefGoogle Scholar
  10. 10.
    Buso D, Falcaro P, Costacurta S, Guglielmi M, Innocenzi P, Malfatti L, Bello V, Mattei G, Sada C, Amenitsch H, Gerdova I, Haché A, Martucci A (2005) Chem Mater 20:4965CrossRefGoogle Scholar
  11. 11.
    Falcaro P, Malfatti L, Kidchob T, Giannini G, Falqui A, Casula MF, Amenitsch H, Marmirolid B, Grenci G, Innocenzi P (2009) Chem Mater 21:2055CrossRefGoogle Scholar
  12. 12.
    Malfatti L, Falcaro P, Maroungiu D, Casula MF, Amenitsch H, Innocenzi P (2009) Chem Mater (in press)Google Scholar
  13. 13.
    Angelomé CP, Fuertes MC, Soler-Illia GJAA (2008) Adv Mater 18:2397CrossRefGoogle Scholar
  14. 14.
    Ito T, Okazaki S (2000) Nature 406:1027CrossRefGoogle Scholar
  15. 15.
    Della Giustina G, Prasciolu M, Brusatin G, Guglielmi M, Romanato F (2007) Mater Sci Eng C 27:1382CrossRefGoogle Scholar
  16. 16.
    Innocenzi PL, Malfatti LT, Kidchob T, Falcaro P (2009) Chem Mater 21:2555CrossRefGoogle Scholar
  17. 17.
    Innocenzi P, Zub YL, Kessler VG (2008) Sol–gel methods for materials processing. Springer––book chapter, mesoporous thin films: properties and applicationsGoogle Scholar
  18. 18.
    Wah Y, Zhao D (2007) Chem Rev 107–7:2821Google Scholar
  19. 19.
    Hartmann M (2005) Chem Mater 17–18:4577CrossRefGoogle Scholar
  20. 20.
    Scott BJ, Wirnsberger G, Stucky GD (2001) Chem Mater 13–10:3140CrossRefGoogle Scholar
  21. 21.
    Sanchez C, Boissiere C, Grosso D, Labery C, Nicole L (2008) Chem Mater 20–3:682CrossRefGoogle Scholar
  22. 22.
    Soler-Illia G, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102–11:4093CrossRefGoogle Scholar
  23. 23.
    Miyata H, Suzuki T, Fukuoka A, Sawada T, Watanabe M, Noma T, Takada K, Mukaide T, Kuroda K (2004) Nat Mater 3:651CrossRefGoogle Scholar
  24. 24.
    Falcaro P, Costacurta S, Mattei G, Amenitsch H, Marcelli A, Guidi MC, Piccinini M, Nucara A, Malfatti L, Kidchob T, Innocenzi P (2005) J Am Chem Soc 127:3838CrossRefGoogle Scholar
  25. 25.
    Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Adv Mater 11:579CrossRefGoogle Scholar
  26. 26.
    Innocenzi P, Malfatti L, Kidchob T, Falcaro P, Cestelli Guidi M, Piccinini M, Marcelli A (2005) Chem Comm 2384Google Scholar
  27. 27.
    Als-Nielsen J, McMorrow D (2008) Element of modern X-ray physics, WileyGoogle Scholar
  28. 28.
    Helliwel JR (1998) Nature structural biology––Synchrotron supplement 614Google Scholar
  29. 29.
    Crepaldi E, Soler-Illia G, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) J Am Chem Soc 125:9770CrossRefGoogle Scholar
  30. 30.
    Bass JD, Grosso D, Boissiere C, Sanchez C (2008) J Am Chem Soc 130:7882CrossRefGoogle Scholar
  31. 31.
    Brezeniski T, Smarsy B, Iimura K, Grosso D, Boissiere C, Amenitsch H, Antonietti M, Sanchez C (2005) Small 8–9:899Google Scholar
  32. 32.
    Grosso D, Boissiere C, Smarsly B, Brezesinski PinnaN, Albouy PA, Amenitsch H, Antonietti M, Sanchez C (2004) Nat Mater 3:787CrossRefGoogle Scholar
  33. 33.
    Malfatti L, Kidchob T, Costacurta S, Falcaro P, Schiavuta P, Amenitsch H, Innocenzi P (2006) Chem Mater 18:4553CrossRefGoogle Scholar
  34. 34.
    Klotz M, Albouy P, Ayral A, Menager C, Grosso D, Van der Lee A, Cabuil V, Babonneau F, Guizard C (2000) Chem Mater 12:1721CrossRefGoogle Scholar
  35. 35.
    Grosso D, Balkenende AR, Albouy P, Ayral A, Amenitsch H, Babonneau F (2001) Chem Mater 13:1848CrossRefGoogle Scholar
  36. 36.
    Cagnol F, Grosso D, Soller-Illia GI, Crepaldi EL, Babonneau F, Amenitsch H, Sanchez C (2003) J Mat Chem 13:61CrossRefGoogle Scholar
  37. 37.
    Innocenzi P, Kidchob T, Falcaro P, Takahashi M (2008) Chem Mater 20:607CrossRefGoogle Scholar
  38. 38.
    Waitz T, Wagner T, Sauerwald T, Kohl C, Tiemann M (2009) Adv Funct Mater 19:653CrossRefGoogle Scholar
  39. 39.
    Lei B, Li B, Zhang H, Lu S, Zheng Z, Li W, Wang Y (2006) Adv Funct Mater 16:1883CrossRefGoogle Scholar
  40. 40.
    Falcaro P, Mio Bertolo J, Innocenzi P, Amenitsch H, Bearzotti A (2004) J Sol-Gel Sci Technol 32:107CrossRefGoogle Scholar
  41. 41.
    Bearzotti A, Innocenzi P, Falcaro P, Mio Bertolo J, Traversa E (2003) Sens Actuators B Chem 75:107CrossRefGoogle Scholar
  42. 42.
    Davis ME (2002) Nature 417:813CrossRefGoogle Scholar
  43. 43.
    Chen D, Huang F, Cheng Y, Caruso R (2009) Adv Mater 21:2206CrossRefGoogle Scholar
  44. 44.
    Malfatti L, Falcaro P, Amenitsch H, Caramori S, Argazzi R, Bignozzi CA, Enzo S, Maggini M, Innocenzi P (2006) Microp Mesop Mater 88(1–3):304CrossRefGoogle Scholar
  45. 45.
    Fan R, Huh S, Yan R, Arnold J, Yang P (2008) Nature Materials 303Google Scholar
  46. 46.
    Allain E, Besson S, Durand C, Moreau M, Gacoin T, Boilot J (2007) Adv Funct Mater 17:549CrossRefGoogle Scholar
  47. 47.
    Rice RL, Arnold DC, Shaw MT, Iacopina D, Quinn AJ, Amenitsch H, Holmes JD, Morris MA (2007) Adv Funct Mater 17:133CrossRefGoogle Scholar
  48. 48.
    Huang L, Wind SJ, O’Brien SP (2003) Nano Letters 3–3:299CrossRefGoogle Scholar
  49. 49.
    Falcaro P, Costacurta S, Malfatti L, Takahashi M, Kidchob T, Casula M, Piccinini M, Marcelli A, Marmiroli B, Amenitsch H, Schiavuta P, Innocenzi P (2008) Adv Mater 20:1864CrossRefGoogle Scholar
  50. 50.
    Bouamrane F, Cremers C, Megter S (2000) Appl Surf Sci 164:97CrossRefGoogle Scholar
  51. 51.
    Scott B, Wirnsberger G, McGehee M, Chmelka B, Stucky G (2001) Adv Mater 13:1231CrossRefGoogle Scholar
  52. 52.
    Kutzamny H (1998) Solid-state spectroscopy. Springer-Verlag, BerlinGoogle Scholar
  53. 53.
    Lee B, Park Y, Hwang Y, Oh W, Yoon J, Ree M (2005) Nat Mater 4:147CrossRefGoogle Scholar
  54. 54.
    Grosso D, Boissière C, Sanchez C (2007) Nat Mater 6:572CrossRefGoogle Scholar
  55. 55.
    Falcaro P, Malfatti L, Vaccari L, Amenitsch H, Marmiroli B, Grenci G, Innocenzi P (2009) Adv Mater. doi: (in press)
  56. 56.
    Buso D, Palmer L, Mattei G, Post M, Mulvaney P, Martucci A (2009) J Mater Chem 19–14:2051CrossRefGoogle Scholar
  57. 57.
    Gotesman G, Naaman R (2008) Langmuir 24–12:5981CrossRefGoogle Scholar
  58. 58.
    Schena M (2003) Microarray analysis. Wiley, Hoboken, NJGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.CSIRO Division of Materials Science and EngineeringClayton South South MDCAustralia
  2. 2.Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT)D.A.P., Università di Sassari and CR-INSTMAlgheroItaly

Personalised recommendations