Advertisement

Journal of Sol-Gel Science and Technology

, Volume 53, Issue 3, pp 525–533 | Cite as

Synthesis and in vitro characterization of freeze-dried doxorubicin-loaded silica xerogels

  • Magdalena Prokopowicz
Original Paper

Abstract

The sol–gel technique can be used as a new method for loading an anticancer drug (doxorubicin hydrochloride) within a silica xerogel matrix. Procedure to obtain a doxorubicin-loaded silica xerogel was specially developed to avoid decomposition of doxorubicin and to facilitate the formation of narrow-pore structure. The main purpose of this paper was to examine molecular and macroscopic structural changes in the novel silica material under the desired conditions of in vitro doxorubicin release. Simulated body fluid (SBF, Kokubo solution) at 37 °C with ion concentrations nearly equal to those of human blood plasma (pH 7.4) was used for in vitro evaluation. The release test of doxorubicin was performed under static conditions with a regular replacement of SBF. The characterization of silica xerogel was performed by using SEM, BET, IR, and nitrogen gas adsorption/desorption measurements. The thermal decomposition behavior of this material was also reported.

Keywords

Sol–gel Silica xerogels Pore Doxorubicin hydrochloride Simulated body fluid 

Notes

Acknowledgments

The author thanks Dr. Andrzej Przyjazny from Kettering University, Flint, MI for his constructive input.

References

  1. 1.
    Brinker CJ, Scherer GW (1989) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Barbé C, Linggen K, Finnie KS, Calleja S, Hanna JV, Drabarek E, Cassidy DT, Blackford MG (2008) Sol–gel matrices for controlled release: from macro to nano using emulsion polymerisation. J Sol–Gel Sci Technol 46:393–409CrossRefGoogle Scholar
  3. 3.
    Finnie KS, Waller DJ, Perret FL, Krause-Heuer AM, Lin HQ, Hanna JV, Barbe′ C (2009) Biodegradability of sol–gel silica microparticles for drug delivery. J Sol–Gel Sci Technol 49:12–18CrossRefGoogle Scholar
  4. 4.
    Figalgo A, Lopez TM, Ilharco LM (2009) Wet sol–gel silica matrices as delivery devices for phenytoin. J Sol–Gel Sci Techn 49:320–328CrossRefGoogle Scholar
  5. 5.
    Rámila A, Del Real RP, Marcos R, Horcajada P, Vallet-Regí M (2003) Drug release and in vitro assays of bioactive polymer/glass mixtures. J Sol–Gel Sci Technol 8:1105–1109Google Scholar
  6. 6.
    Prokopowicz M (2009) Correlation between physicochemical properties of doxorubicin-loaded silica/polydimethylsiloxane xerogel and in vitro release of drug. Acta Biomater 5:193–207CrossRefPubMedGoogle Scholar
  7. 7.
    Sieminska L, Ferguson M, Zerda TW, Couch E (1997) Diffusion of steroids in porous sol–gel glass: application in slow drug delivery. J Sol–Gel Sci Technol 26:1195–1198Google Scholar
  8. 8.
    Viitala R, Jokinen M, Tuusa S, Rosenholm JB, Jalonen H (2005) Adjustably bioresorbable sol–gel derived SiO2 matrices for release of large biologically active molecules. J Sol–Gel Sci Technol 36:147–156CrossRefGoogle Scholar
  9. 9.
    Roveri N, Morpurgo M, Palazzo B, Parma B, Vivi L (2005) Silica xerogels as a delivery system for the controlled release of different molecular weight heparins. Anal Bioanal Chem 381:601–606CrossRefPubMedGoogle Scholar
  10. 10.
    Radin S, El-Bassyouni G, Vresilovic EJ, Schepers E, Ducheyne P (2005) In vivo tissue response as resorbable silica xerogels as controlled-release materials. Biomaterials 26:1043–1052CrossRefPubMedGoogle Scholar
  11. 11.
    Tsuru K, Aburatani Y, Yabuta T, Hayakawa S, Ohtsuki C, Osaka A (2001) Synthesis and In Vitro Behavior of Organically Modified Silicate Containing Ca Ions. J Sol–Gel Sci Technol 21:89–96CrossRefGoogle Scholar
  12. 12.
    Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175CrossRefPubMedGoogle Scholar
  13. 13.
    Bast A, Kaiserová H, den Hartog GJM, Haenen GRMM, van der Vijgh WJF (2007) Protectors against doxorubicin-induced cardiotoxicity: flavonoids. Cell Biol Toxicol 23:39–47CrossRefPubMedGoogle Scholar
  14. 14.
    Janssen MJH, Crommelin DJA, Storm G, Hulshoff A (1985) Doxorubicin decomposition on storage. Effect of pH, type of buffer and liposome encapsulation. Int J Pharm 23:1–11CrossRefGoogle Scholar
  15. 15.
    Prokopowicz M (2007) In vitro controlled release of doxorubicin from silica xerogels. J Pharm Pharmacol 59:1365–1373CrossRefPubMedGoogle Scholar
  16. 16.
    Ocotlán-Flores J, Saniger JM (2006) Catalyst-free SiO2 sonogels. J Sol–Gel Sci Technol 39:235–240CrossRefGoogle Scholar
  17. 17.
    Brunauer S, Deming LS, Deming WE, Teller E (1940) On the theory of van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732CrossRefGoogle Scholar
  18. 18.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  19. 19.
    Fidalgo A, Ilharco LM (2004) Correlation between physical properties and structure of silica xerogels. J Non-Cryst Solids 347:128–137CrossRefADSGoogle Scholar
  20. 20.
    Jung HY, Gupta RK, Oh EO, Kim YH, Whang CM (2005) Vibrational spectroscopic studies of sol–gel derived physical and chemical bonded Oromisils. J Non-Cryst Solids 351:372–379CrossRefADSGoogle Scholar
  21. 21.
    Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319CrossRefADSGoogle Scholar
  22. 22.
    Godec A, Maver U, Bele M, Planinšek O, Srčič S, Gaberšček M, Jamnik J (2007) Vitrification from solution in restricted space: formation and stabilization of amorphous nifedipine in a nanoporous silica xerogel carrier. Int J Pharm 343:131–140CrossRefPubMedGoogle Scholar
  23. 23.
    Porumb H (1978) The solution spectroscopy of drugs and the drug-nucleic acid interactions. Prog Biophys Moelc Biol 34:175–195CrossRefGoogle Scholar
  24. 24.
    Tűrker L (2002) Quantum chemical studies on certain anthracycline antibiotics. Theochem 583:81–87CrossRefGoogle Scholar
  25. 25.
    Prokopowicz M, Przyjazny A (2007) Synthesis of sol–gel mesoporous silica materials providing a slow release of doxorubicin. J Microencapsul 24(7):694–713CrossRefGoogle Scholar
  26. 26.
    Ritger PL, Peppas N (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–26CrossRefGoogle Scholar
  27. 27.
    Huang X, Brazel C (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release 73:121–136CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Physical ChemistryMedical University of GdańskGdańskPoland

Personalised recommendations