Advertisement

Journal of Sol-Gel Science and Technology

, Volume 53, Issue 2, pp 418–427 | Cite as

Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia

  • Karynne C. Souza
  • Nelcy D. S. Mohallem
  • Edésia M. B. Sousa
Original Paper

Abstract

The synthesis of nanostructured magnetic materials has been intensively researched because of their large field of applications as magnetic carriers in drug targeting, hyperthermia in tumor treatment, among others. Much effort has been invested in magnetic nanoparticles for bioapplications. However, as these nanoparticles present high specific surface area, unprotected nanoparticles can easily form aggregates and react with oxygen in the air. They can also rapidly biodegrade when directly exposed to biological systems. In this context, we have explored the possibility of synthesizing a mesoporous SiO2–Fe3O4 nanocomposite and its AC magnetic-field-induced heating properties. The magnetite nanocomposite was obtained by impregnation of an iron precursor into a silica framework. The proposed method involves the preparation of an iron oxide precursor in ethanol and the subsequent impregnation of SBA-15 mesoporous hexagonal silica. Iron oxide was formed inside the porous structure, thus producing the magnetic device. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), N2 adsorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Measurements of AC magnetic-field-induced heating properties of the obtained nanocomposite, both of the solid form and in aqueous solution, under different applied magnetic fields showed that it is suitable as a hyperthermia agent for biological applications.

Keywords

Mesoporous materials Nanocomposite Magnetite Hyperthermia 

Notes

Acknowledgments

This work has been supported by CAPES, CNPq, FAPEMIG and LNLS (Campinas, Brazil).

References

  1. 1.
    Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sem T (2009) J Magn Magn Mater 284:145–160CrossRefADSGoogle Scholar
  2. 2.
    Azzazy HME, Mansour MMH (2009) Clinica Chimica Acta 403:1–8CrossRefGoogle Scholar
  3. 3.
    Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) J Am Chem Soc 128:7383–7389CrossRefPubMedGoogle Scholar
  4. 4.
    Kim TW, Chung PW, Slowing II, Tsunoda M, Yeung ES, Lin VSY (2008) Nano Lett 8:3724–3727CrossRefPubMedADSGoogle Scholar
  5. 5.
    Qin J, Asempah I, Laurent S, Fornara A, Muller RN, Muhammed M (2009) Adv Mater 21:1354–1357CrossRefGoogle Scholar
  6. 6.
    He YP, Wang SQ, Li CR, Miao YM, Wu ZY, Zou BS (2005) J Phys D-Appl Phys 38:1342–1350CrossRefADSGoogle Scholar
  7. 7.
    Chastellain M, Petri A, Gupta A, Rao KV, Hofman H (2004) Adv Eng Mater 6:235–241CrossRefGoogle Scholar
  8. 8.
    Julián-López B, Boissière C, Chanéac C, Grosso D, Vasseur S, Miraux S, Duguet E, Sanchez C (2007) J Mater Chem 17:1563–1569CrossRefGoogle Scholar
  9. 9.
    Le Renard P-E, Buchegger F, Petri-Fink A, Bosman F, Rüfenacht D, Hofmann H, Doelker E, Jordan O (2009) Int J Hyperth 25:229–239CrossRefGoogle Scholar
  10. 10.
    Kalambur VS, Han B, Hammer BE, Shield TW, Bischof JC (2005) Nanotechnology 16:1221–1233CrossRefADSGoogle Scholar
  11. 11.
    Zhu Y, Wu Q (1999) J Nanopart Res 1:393–396CrossRefGoogle Scholar
  12. 12.
    Konishi Y, Nomura T, Mizoe K (2004) Hydrometallurgy 74:57–65CrossRefGoogle Scholar
  13. 13.
    Liu ZL, Wang X (2004) J Mater Sci 39:2633–2636CrossRefADSGoogle Scholar
  14. 14.
    Franger S, Berthet P, Berthon J (2004) J Solid State Electrochem 8:218–223CrossRefGoogle Scholar
  15. 15.
    Gun’ko YK, Pillai SC, Mcinerney D (2001) J Mater Sci Mater Electron 12:299–302CrossRefGoogle Scholar
  16. 16.
    Wu M, Xiong Y, Jia Y, Niu H, Qi H, Ye J, Chen Q (2005) Chem Phys Lett 401:374–379CrossRefADSGoogle Scholar
  17. 17.
    Khollam YB, Dhage SR, Potdar HS, Deshpande SB, Bakare PP, Kulkarni SD, Date SK (2002) Mater Lett 56:571–577Google Scholar
  18. 18.
    Zhang Z, Zhang L, Chen L, Chen L, Wan QH (2006) Biotechnol Prog 22:514–518CrossRefPubMedGoogle Scholar
  19. 19.
    Zhao DL, Zeng XW, Xia QS, Tang JT (2009) J Alloys Compd 469:215–218CrossRefGoogle Scholar
  20. 20.
    Wu JH, Ko SP, Liu HL, Jung MH, Lee JH, Ju JS, Kim YK (2008) Coll Surf A Physicochem Eng Aspects 313–314:268–272CrossRefGoogle Scholar
  21. 21.
    Franger S, Berthet P, Dragos O, Baddour-Hadjean R, Bonville P, Berthon J (2007) J Nanoparticle Res 9:389–402CrossRefGoogle Scholar
  22. 22.
    Souza KC, Ardisson JD, Sousa EMB (2009) J Mater Sci Mater Med 20:507–512CrossRefPubMedGoogle Scholar
  23. 23.
    Sousa A, Souza KC, Reis SC, Sousa RG, Windmöller D, Machado JC, Sousa EMB (2008) J Non-Cryst Solids 354:4800–4805CrossRefADSGoogle Scholar
  24. 24.
    Sousa A, Sousa EMB (2005) Arquivos de Biologia e Tecnologia 48:243–250Google Scholar
  25. 25.
    Souza KC, Salazar-Alvarez G, Ardisson JD, Macedo WAA, Sousa EMB (2008) Nanotechnology 19:185603 (7 pp)CrossRefADSGoogle Scholar
  26. 26.
    Alvaro M, Aprile C, Garcia H, Gómez-García CJ (2006) Adv Funct Mater 16:1543–1548CrossRefGoogle Scholar
  27. 27.
    Ma Z, Guan Y, Liu H (2006) J Magn Magn Mater 301:469–477CrossRefADSGoogle Scholar
  28. 28.
    Chen FH, Gao Q, Ni JZ (2008) Nanotechnology 19:165103 (9 pp)CrossRefADSGoogle Scholar
  29. 29.
    Guo H, Zhang X, Cui MH, Sharma R, Yang NL, Akins DL (2005) Mater Res Bull 40:1713–1725CrossRefGoogle Scholar
  30. 30.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319CrossRefADSGoogle Scholar
  31. 31.
    Coey JMD, Cugat O, Mccauley J, Fabris JD (1992) Revista de Física Aplicada e Instrumentação 7:25–30Google Scholar
  32. 32.
    Holmes SM, Zholobenko VL, Thursfield A, Plaisted RJ, Cundy CS, Dwyer J (1998) J Chem Soc, Faraday Trans 94:2025–2032CrossRefGoogle Scholar
  33. 33.
    Berubé F, Kaliaguine S (2008) Microporous Mesoporous Mater 115:469–479CrossRefGoogle Scholar
  34. 34.
    Arruebo M, Galán M, Navascués N, Téllez C, Marquina C, Ibarra MR, Santamaría J (2006) Chem Mater 18:1911–1919CrossRefGoogle Scholar
  35. 35.
    Birsan C, Predoi D, Andronescu E (2007) J Optoelectron Adv Mater 9:1821–1824Google Scholar
  36. 36.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefPubMedADSGoogle Scholar
  37. 37.
    Du Y, Liu S, Ji Y, Zhang Y, Liu F, Gao Q, Xiao FS (2008) Catal Today 131:70–75CrossRefGoogle Scholar
  38. 38.
    Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) J Magn Magn Mater 320:2390–2396CrossRefADSGoogle Scholar
  39. 39.
    Bae S, Lee SW, Hirukawa A, Takemura Y, Jo YH, Lee SG (2009) IEEE Trans Nanotechnol 8:86–94CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Karynne C. Souza
    • 1
  • Nelcy D. S. Mohallem
    • 1
  • Edésia M. B. Sousa
    • 2
  1. 1.Departamento de Química/UFMGLaboratório de Materiais NanoestruturadosBelo HorizonteBrazil
  2. 2.Serviço de NanotecnologiaCDTN/CNENBelo HorizonteBrazil

Personalised recommendations