Journal of Sol-Gel Science and Technology

, Volume 53, Issue 2, pp 347–352 | Cite as

Water determination of precursor solutions with oxidant cations by the Karl Fischer method: the YBCO-TFA case

  • A. Calleja
  • S. Ricart
  • X. Palmer
  • R. F. Luccas
  • T. Puig
  • X. Obradors
Original Paper


Uncontrolled water content in non-aqueous precursor solutions can be a source of irreproducibility in thin film performance through changes in the gel network. Towards gaining control on the solution properties, water determination in metalorganic solutions of YBCO-TFA has been studied by the Karl Fischer titration in a volumetric-type unit. However, oxidizing cations usually present when preparing functional oxides by chemical solution routes severely interfere in the Karl Fischer analysis. In the case of YBCO-TFA, cupric ions in the initial solution oxidize the iodide produced in the Karl Fischer reaction back to iodine, which in turn feeds the titration reaction and consumes more water, causing a negative error in the analysis, which can be as large as 70%. However, such chemical interference of cupric salts can be modelled and quantified. A corrected Karl Fischer methodology is proposed for accurately measuring water content in YBCO-TFA solutions, which could be potentially extended to other precursor solutions containing oxidant cations.


Water determination Metalorganic decomposition Characterization Karl Fischer YBCO-TFA 



The authors acknowledge financial support from Spanish Ministerio de Educación y Ciencia (MAT2008.01022/NAN, CSD2007-00041, MAT2005-02047, NAN2004-09133-C03-01 and I3P-JAE), Generalitat de Catalunya (2005SGR0029 and XaRMAE) and EU HIPERCHEM (NMP-CT2005-516858). A. C. wishes to thank Ministerio de Ciencia e Innovación for the Spanish Ramón y Cajal program, Dr. Mark Rikel from Nexans Superconductors GmbH for valuable discussions and Dr. Marta Figueredo from the Organic Chemistry Department of the Autonomous University of Barcelona for the use of the Karl Fischer titration unit.


  1. 1.
    Bhuiyan MS, Paranthaman M, Salama K (2006) Supercond Sci Technol 19:R1–R21. doi: 10.1088/0953-2048/19/2/R01 CrossRefADSGoogle Scholar
  2. 2.
    Obradors O, Puig T, Pomar A, Sandiumenge F, Mestres N, Coll M, Cavallaro A, Romà N, Gázquez J, González JC, Castaño O, Gutiérrez J, Palau A, Zalamova K, Morlens S, Hassini A, Gibert M, Ricart S, Moretó JM, Piñol S, Isfort D, Bock J (2006) Supercond Sci Technol 19:S13–S26. doi: 10.1088/0953-2048/19/3/003 CrossRefADSGoogle Scholar
  3. 3.
    McIntyre PC, Cima MJ, Ng MF, Chiu RC, Rhine WE (1990) J Mater Res 5:2771–2779. doi: 10.1557/JMR.1990.2771 CrossRefADSGoogle Scholar
  4. 4.
    Bruneel E, Verbauwhede D, Van de Vyver D, Schaubroeck J, Hoste S, Van Driessche I (2005) Supercond Sci Technol 18:907–911. doi: 10.1088/0953-2048/18/6/019 CrossRefADSGoogle Scholar
  5. 5.
    Arul Antony S, Nagaraja KS, Sahasranaman S, Sreedharan OM (1999) Physica C 323:115–121. doi: 10.1016/S0921-4534(99)00458-X CrossRefADSGoogle Scholar
  6. 6.
    Morlens S, Romà N, Ricart S, Pomar A, Puig T, Obradors X (2007) J Mater Res 22:2330–2338. doi: 10.1557/jmr.2007.0296 CrossRefADSGoogle Scholar
  7. 7.
    Kramer S, Wu K, Kordas G (1988) J Electron Mater 17:135–137. doi: 10.1007/BF02652143 CrossRefADSGoogle Scholar
  8. 8.
    Zalamova K, Romà N, Pomar A, Morlens S, Puig T, Gázquez J, Carrillo AE, Sandiumenge F, Ricart S, Mestres N, Obradors X (2006) Chem Mater 18:5897–5906. doi: 10.1021/cm061556+ CrossRefGoogle Scholar
  9. 9.
    Karl Fischer reagents—technical manual, Mitsubishi Chemical Corporation, Tokyo. Accessed 15 Jan 2009
  10. 10.
    Mitchell J (1951) Anal Chem 23:1069–1075. doi: 10.1021/ac60056a005 CrossRefGoogle Scholar
  11. 11.
    Mitchell J, Smith DM, Ashby EC, Bryant WMD (1941) J Am Chem Soc 63:2927–2930. doi: 10.1021/ja01856a017 CrossRefGoogle Scholar
  12. 12.
    Araki T, Hirabayasi I, Niwa T (2004) Supercond Sci Technol 17:135–139. doi: 10.1088/0953-2048/17/1/023 CrossRefADSGoogle Scholar
  13. 13.
    Steffens M, Falter M, Bäcker M, Oligschleger C (2008) J Phys Conf Ser 97:012165. doi: 10.1088/1742-6596/97/1/012165 CrossRefGoogle Scholar
  14. 14.
    Araki T, Kato T, Muroga T, Niwa T, Yuasa T, Kurosaki H, Iijima Y, Yamada Y, Hirayama T, Saitoh T, Shiohara Y, Hirabayashi I (2003) IEEE Trans Appl Supercond 13:2803–2808. doi: 10.1109/TASC.2003.812007 CrossRefGoogle Scholar
  15. 15.
    Jones AG (1951) Analyst (Lond) 76:5–12. doi: 10.1039/an9517600005 CrossRefADSGoogle Scholar
  16. 16.
    Bryant WMD, Mitchell J, Smith DM, Ashby EC (1941) J Am Chem Soc 63:2924–2927. doi: 10.1021/ja01856a016 CrossRefGoogle Scholar
  17. 17.
    Shahidi F, Farrell PG, Edward JT (1976) J Solution Chem 5:807–816. doi: 10.1007/BF01167236 CrossRefGoogle Scholar
  18. 18.
    Iida M, Masuda R, Naren G, Bin Y, Kajiwara K (2004) Chem Lett 33:1462–1463. doi: 10.1246/cl.2004.1462 CrossRefGoogle Scholar
  19. 19.
    Romà N, Morlens S, Ricart S, Zalamova K, Moretó JM, Pomar A, Puig T, Obradors X (2006) Supercond Sci Technol 19:521–527. doi: 10.1088/0953-2048/19/6/019 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Calleja
    • 1
    • 2
  • S. Ricart
    • 1
  • X. Palmer
    • 1
  • R. F. Luccas
    • 1
  • T. Puig
    • 1
  • X. Obradors
    • 1
  1. 1.Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones CientíficasBellaterraSpain
  2. 2.Institut de Ciència i Tecnologia AmbientalsUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations