Skip to main content
Log in

Optically transparent superhydrophobic TEOS-derived silica films by surface silylation method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Optically transparent silica films were prepared at room temperature (~27°C) by keeping the molar ratio of TEOS:MeOH:H2O (0.001 M NH4F) constant at 1:19.29:6.20, respectively. A surface chemical modification of the films was done with alkylchlorosilanes at different concentrations from 0 to 1 vol. % and aging times varied from half to 2 h. The DMCS and TMCS surface modified silica films showed the static water contact angle of 146° and 162°, respectively. When the DMCS and TMCS modified films were cured at temperatures higher than 240 and 275°C, respectively, the films became superhydrophilic. Further, the humidity study was carried out at a relative humidity of 90% at 30°C temperature over 60 days. We characterized the water repellent silica films by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, % of optical transmission, humidity tests and contact angle measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barthlott W, Neinhuis C (1997) Planta 202:1

    Article  CAS  Google Scholar 

  2. Neinhuis C, Barthlott W (1997) Ann Bot 79:667 (London)

    Article  Google Scholar 

  3. Nakajima A, Hashimoto K, Watanabe T (2001) Monatsh chem chem Mon 132:31

    CAS  Google Scholar 

  4. Tada H, Nagayama H (1995) Langmuir 11(1):136

    Article  CAS  Google Scholar 

  5. Blossey R (2003) Nat Mater 2:301

    Article  PubMed  ADS  CAS  Google Scholar 

  6. Latthe SS, Nadargi DY, Rao AV (2009) J Appl Surf Sci 255:3600

    Article  ADS  CAS  Google Scholar 

  7. Latthe SS, Hirashima H, Rao AV (2009) J Smart Mater Struct 18:095017

    Article  ADS  CAS  Google Scholar 

  8. Chang KC, Chen YK, Chen H (2008) Surf Coat Technol 202:3822

    Article  CAS  Google Scholar 

  9. Tian H, Yang T, Chen Y (2009) Appl Surf Sci 255:4289

    Article  ADS  CAS  Google Scholar 

  10. Gu G, Dang H, Zhang Z, Wu Z (2006) Appl Phys A 83:131

    Article  ADS  CAS  Google Scholar 

  11. Chang KC, Chen YK, Chen H (2007) J Appl Polym Sci 107:1530

    Article  CAS  Google Scholar 

  12. Su B, Choy KL (1999) J Mater Sci Lett 18:1705

    Article  CAS  Google Scholar 

  13. Shewale PM, Rao AV, Rao AP (2008) J Appl Surf Sci 254:6902

    Article  ADS  CAS  Google Scholar 

  14. Krysztafkiewicz A, Rager B, Jesionowski T (1997) J Mater Sci 32:1333

    Article  CAS  Google Scholar 

  15. Gellermann C, Storch W, Wolter H (1997) J Sol–Gel Sci Technol 8:173

    CAS  Google Scholar 

  16. He ZW, Zhen CM, Liu XQ, Lan W, Xu DY, Wang YY (2004) Thin Solid Films 462:168

    Article  ADS  CAS  Google Scholar 

  17. Huang KY, He ZP, Chao KJ (2006) Thin Solid Films 495:197

    Article  ADS  CAS  Google Scholar 

  18. Jeong AY, Koo SM, Kim DP (2000) J. Sol–Gel Sci Technol 19:483

    Article  CAS  Google Scholar 

  19. Orozco-Teran RA, Gorman BP, Mueller DW, Baklanov MR, Reidy RF (2005) Thin Solid Films 471:145

    Article  ADS  CAS  Google Scholar 

  20. Nitta SV, Pisupatti V, Jain A, Wayner PC Jr, Gill WN, Plawsky JL (1999) J Vac Sci Technol B 17:205

    Article  CAS  Google Scholar 

  21. Rao AV, Latthe SS, Nadargi DY, Hirashima H, Ganesan V (2009) J Colloid Interface Sci 332:484

    Article  CAS  Google Scholar 

  22. Hering N, Schriber K, Riedel R, Lichtenberger O, Woltersodorf J (2001) Appl Organom chem 15:879

    Article  CAS  Google Scholar 

  23. Yoldas BE (1984) J Non-Cryst Solids 63:145

    Article  ADS  CAS  Google Scholar 

  24. Chang TC et al (2002) Thin Solid Films 420:403

    Article  ADS  Google Scholar 

  25. Wenzel RN (1936) Ind Eng Chem 28:988

    Article  CAS  Google Scholar 

  26. Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546

    Article  CAS  Google Scholar 

  27. de Gennes PG, Brochard-Wyart F, Quere D (2004) Handbook of ‘capillarity and wetting phenomena: drops, bubbles, pearls waves’. Springer, Paris, France, p 291

    Google Scholar 

  28. Wanielista M, Kersten R, Eaglin R (1997) Handbook of ‘hydrology water quantity and quality control, 2nd edn. Wiley, New York, p 567

    Google Scholar 

  29. Nakajima A (2004) J Ceram Soc Jpn 112:533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors Sanjay S. Latthe is grateful to University Grant Commission (UGC), New Delhi, Government of India, for providing “UGC Research Fellowship in Sciences for Meritorious Students”. The authors are grateful to the Department of Atomic Energy (DAE), Board of Research in Nuclear Sciences (BRNS), Mumbai, Government of India, for the financial support for this work through a major research project on “Aerogels and coatings” (No. 2007/37/18/BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venkateswara Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latthe, S.S., Imai, H., Ganesan, V. et al. Optically transparent superhydrophobic TEOS-derived silica films by surface silylation method. J Sol-Gel Sci Technol 53, 208–215 (2010). https://doi.org/10.1007/s10971-009-2079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2079-y

Keywords

Navigation