Journal of Sol-Gel Science and Technology

, Volume 53, Issue 2, pp 162–170 | Cite as

Amorphous titanium dioxide: a recyclable dye remover for water treatment

  • Miki Kanna
  • Sumpun Wongnawa
  • Supat Buddee
  • Ketsarin Dilokkhunakul
  • Peerathat Pinpithak
Original Paper


Decolorization of dye solutions, crystal violet and congo red, were investigated using the synthesized amorphous titanium dioxide and compared with commercial titanium dioxides: Degussa P25 and anatase. Results showed that amorphous TiO2 had good adsorptivity that could decolorize the dye polluted water effectively mainly by adsorption. Decolorization by photocatalytic property was also detected but was very low. Concentrations of dye solutions used in this work were about ten times higher than normally used in other reports. After use, the particle surface was completely covered with dye molecules but this could be regenerated and the cleaned particles could be reused several times. Hydrogen peroxide and ultraviolet irradiation were used in the regeneration process.


Amorphous titanium dioxide Titanium dioxide photocatalyst Dye adsorption Dye degradation Dye decolorization 



This research is supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No.PHD/0126/2546 to M.K.); the Center for Innovation in Chemistry (PERCH-CIC), Commision on Higher Education, Ministry of Education; and the Graduate School of Prince of Songkla University (to both M.K. and S.B.). Sample of Degussa P25 used throughout this work was donated by Degussa AG, Frankfurt, Germany, through its agency in Bangkok, Thailand.


  1. 1.
    Zainal Z, Hui LK, Hussein MZ, Taufiq-Yap YH, Abdullah AH, Ramli I (2005) J Hazard Mater 125:113CrossRefPubMedGoogle Scholar
  2. 2.
    Salem IA (2000) Appl Catal B 28:153 and references cited thereinCrossRefGoogle Scholar
  3. 3.
    Sauer T, Cesconeto Neto G, José HJ, Moreira RFPM (2002) J Photochem Photobiol A 149:147CrossRefGoogle Scholar
  4. 4.
    Senthilkumaar S, Kalaamani P, Subburaam CV (2006) J Hazard Mater B 136:800CrossRefGoogle Scholar
  5. 5.
    Purkait MK, Maiti A, DasGupta S, De S (2007) J Hazard Mater 145:287CrossRefPubMedGoogle Scholar
  6. 6.
    Namasivayam C, Kavitha D (2002) Dyes Pigm 54:47CrossRefGoogle Scholar
  7. 7.
    Wang L, Wang A (2008) J Hazard Mater 160:173CrossRefPubMedGoogle Scholar
  8. 8.
    Singh V, Sharma AK, Tripathi DN, Sanghi R (2009) J Hazard Mater 161:955CrossRefPubMedGoogle Scholar
  9. 9.
    Khataee AR, Vatanpour V, Amani Ghadim AR (2009) J Hazard Mater 161:1225CrossRefPubMedGoogle Scholar
  10. 10.
    Namasivayam C, Kanchana N (1992) Chemosphere 25:1691CrossRefGoogle Scholar
  11. 11.
    Deo N, Ali M (1993) Indian J Environ Prot 13:496Google Scholar
  12. 12.
    Namasivayam C, Arasi DJSE (1997) Chemosphere 34:401CrossRefGoogle Scholar
  13. 13.
    Dutta PK (1994) Indian J Environ Prot 14:443Google Scholar
  14. 14.
    Namasivayam C, Yamuna RTJ (1992) Chem Technol Biotechnol 53:153Google Scholar
  15. 15.
    Hoffman MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  16. 16.
    Stylidi M, Kondarides DI, Verykios XE (2004) Appl Catal B 47:189CrossRefGoogle Scholar
  17. 17.
    Ding XZ, Liu XH (1997) Mater Sci Eng A 224:210CrossRefGoogle Scholar
  18. 18.
    Bakardjieva S, Šubrt J, Štengl V, Dianez MI, Sayagues MJ (2005) Appl Catal B 58:193CrossRefGoogle Scholar
  19. 19.
    Randorn C, Wongnawa S, Boonsin P (2004) ScienceAsia 30:149CrossRefGoogle Scholar
  20. 20.
    Kanna M, Wongnawa S, Sherdshoopongse P, Boonsin P (2005) Songklanakarin J Sci Technol 27:1017Google Scholar
  21. 21.
    Tanaka K, Campule MFV, Hisanaga T (1991) Chem Phys Lett 187:73CrossRefADSGoogle Scholar
  22. 22.
    Ohtani B, Ogawa Y, Nishimoto S (1997) J Phys Chem B 101:3746CrossRefGoogle Scholar
  23. 23.
    Jensen H, Joensen KD, Jorgensen J-E, Pedersen JS, Sogaard EG (2005) J Nanopart Res 6:519CrossRefGoogle Scholar
  24. 24.
    Zhang Z, Maggard PA (2007) J Photochem Photobiol A 186:8CrossRefGoogle Scholar
  25. 25.
    Baiju KV, Shukla S, Sandhya KS, James J, Warrier KGK (2007) J Phys Chem C 111:7612CrossRefGoogle Scholar
  26. 26.
    Clark RJH (1968) The chemistry of titanium and vanadium. Elsevier Publishing Co., AmsterdamGoogle Scholar
  27. 27.
    Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Appl Catal B 31:145CrossRefGoogle Scholar
  28. 28.
    Galindo C, Jacques P, Kalt A (2000) J Photochem Photobiol A 130:35CrossRefGoogle Scholar
  29. 29.
    Shu H-Y, Chang M-C (2005) J Hazard Mater 125:96CrossRefPubMedGoogle Scholar
  30. 30.
    Shu H-Y, Chang M-C (2005) J Hazard Mater 125:244CrossRefPubMedGoogle Scholar
  31. 31.
    Rosenfeldt EJ, Linden KG, Canonica S, von Gunten U (2006) Water Res 40:3695CrossRefPubMedGoogle Scholar
  32. 32.
    Huang C-P, Huang Y-H (2009) Appl Catal A 357:135CrossRefGoogle Scholar
  33. 33.
    Moura FCC, Oliveira GC, Araujo MH, Ardisson JD, Macedo WAA, Lago RM (2006) Appl Catal A 307:195CrossRefGoogle Scholar
  34. 34.
    Han Y-F, Chen F, Ramesh K, Zhong Z, Widjaja E, Chen L (2007) Appl Catal B 76:227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Miki Kanna
    • 1
  • Sumpun Wongnawa
    • 2
  • Supat Buddee
    • 2
  • Ketsarin Dilokkhunakul
    • 2
  • Peerathat Pinpithak
    • 2
  1. 1.Chemistry Program, Faculty of Science and TechnologyChiang Mai Rajabhat UniversityChiang MaiThailand
  2. 2.Department of Chemistry and Center for Innovation in Chemistry, Faculty of SciencePrince of Songkla UniversityHat Yai, SongkhlaThailand

Personalised recommendations