Skip to main content
Log in

Growth mechanism of Nb-doped TiO2 sol–gel multilayer films characterized by SEM and focus/defocus TEM

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

TiO2 and Nb-doped TiO2 films were prepared by sol–gel processing, their microstructure was adjusted by varying the number of subsequent coating-firing cycles that resulted in final total film thickness of ~100 nm. When only few subsequent coatings are stacked (large single layer thickness) granular polycrystalline microstructures are observed. Doping with Nb reduces the crystallite size compared to the respective pure anatase films. When the single layer thickness is reduced, the film growth is successively dominated by the nucleation of subsequent films on the underlying crystalline material resulting in a columnar dense film structure. The multilayer architecture of such films can be demonstrated by defocus TEM imaging even if crystalline columns exceed single film boundaries. Results indicate that Nb is homogeneously incorporated into the anatase lattice by substitution of Ti, nevertheless the electric conductivity after H2 post annealing is significantly lower than reported for analogous films prepared by magneton sputtering or pulsed laser deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brinker C, Scherer G (1990) Sol–gel science—the physics and chemistry of sol–gel processing. Academic Press, Boston

    Google Scholar 

  2. Schottner G (2001) Chem Mater 13:3422

    Article  CAS  Google Scholar 

  3. Mackenzie J (2003) J Sol–Gel Sci Technol 26:23

    Article  CAS  Google Scholar 

  4. Bockmeyer M, Löbmann P (2006) Chem Mater 18:4478

    Article  CAS  Google Scholar 

  5. Reaney I, Taylor D, Brooks K (1998) J Sol–Gel Sci Technol 13:813

    Article  CAS  Google Scholar 

  6. Risse G, Schlobach B, Haessler W, Stephan D, Fahr T, Fischer F (1999) J Eur Ceram Soc 19:125

    Article  CAS  Google Scholar 

  7. Wang S, Qiu L, Wang L, Du P, Chen S, Han Z (2005) Supercond Sci Technol 18:1271

    Article  CAS  ADS  Google Scholar 

  8. Kozuka H, Takenaka S, Tokita H, Hirano T, Higashi Y, Hamatani T (2003) J Sol–Gel Sci Technol 26:681

    Article  CAS  Google Scholar 

  9. Bockmeyer M, Löbmann P (2007) Thin Solid Films 515:5212

    Article  CAS  ADS  Google Scholar 

  10. Schuler T, Aegerter M (1999) Thin Solid Films 351:125

    Article  CAS  ADS  Google Scholar 

  11. Schuler T, Krajewski T, Grobelsek I, Aergerter M (2004) J Sol–Gel Sci Techno 31:235

    Article  CAS  Google Scholar 

  12. Schuler T, Krajewski T, Grobelsek I, Aergerter M (2006) Thin Solid Films 502:67

    Article  CAS  ADS  Google Scholar 

  13. Bockmeyer M, Herbig B, Löbmann P (2009) Thin Solid Films 517:1596

    Article  CAS  ADS  Google Scholar 

  14. Beaurain A, Luxembourg D, Dufour C, Koncar V, Capoen B, Bouazaoui M (2008) Thin Solid Films 516:4102

    CAS  Google Scholar 

  15. Lin K, Tsai P (2007) Thin Solid Films 515:8601

    Article  CAS  ADS  Google Scholar 

  16. Szyszka B (2001) Vakuum Forsch Prax 1:38

    Article  Google Scholar 

  17. Minami T (2005) Semicond Sci Technol 20:S35

    Article  CAS  ADS  Google Scholar 

  18. Schmidt-Mende L, MacManus-Driscoll J (2007) MaterialsToday 10(5):40

    CAS  Google Scholar 

  19. Puetz M, Aegerter M (2008) Thin Solid Films 516:4495

    Article  CAS  ADS  Google Scholar 

  20. Prodi-Schwab A, Luethge T, Jahn R, Herbig B, Loebmann P (2008) J Sol–Gel Sci Technol 47:68

    Article  CAS  Google Scholar 

  21. Furubayashi Y, Hitosugi T, Yamamoto Y, Hirose Y, Kinoda G, Inaba K, Shimada T, Hasegawa T (2006) Thin Solid Films 496:157

    Article  CAS  ADS  Google Scholar 

  22. Hitosugi T, Ueda A, Furubayashi Y, Hirose Y, Konuma S, Shimada T, Hasegawa T (2007) Jpn J Appl Phys 46(3):L86

    Article  CAS  ADS  Google Scholar 

  23. Yamada N, Hitosugi T, Hoang N, Furubayashi Y, Hirose Y, Shimada T, Hasegawa T (2007) Jpn J Appl Phys 46(8A):5275

    Article  CAS  ADS  Google Scholar 

  24. Sato Y, Akizuki H, Kamiyama T, Shigesato Y (2008) Thin Solid Films 516:5758

    Article  CAS  ADS  Google Scholar 

  25. Löbmann P (2005) J Sol–Gel Sci Technol 33:275

    Article  Google Scholar 

  26. Diaz-Parralejo A, Caruso R, Ortiz A, Guiberteau F (2004) Thin Solid Films 458:92

    Article  CAS  ADS  Google Scholar 

  27. Zhang Y, Reller A (2002) Mater Sci Eng C 19:323

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded within the framework METCO of the Fraunhofer-Gesellschaft. The authors gratefully acknowledge Annett Halbhuber’s careful and accurate dedication to the preparation of multiple coatings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer Löbmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Meinhardt, J. & Löbmann, P. Growth mechanism of Nb-doped TiO2 sol–gel multilayer films characterized by SEM and focus/defocus TEM. J Sol-Gel Sci Technol 53, 148–153 (2010). https://doi.org/10.1007/s10971-009-2070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2070-7

Keywords

Navigation