Advertisement

Journal of Sol-Gel Science and Technology

, Volume 53, Issue 1, pp 101–106 | Cite as

Reverse micelles template assisted fabrication of ZnO hollow nanospheres and hexagonal microtubes by a novel fast microemulsion-based hydrothermal method

  • Jiaheng Wang
  • Nan Shi
  • Yang Qi
  • Meilin Liu
Original Paper

Abstract

ZnO hollow micro/nanostructures were fabricated by a novel fast hydrothermal method based on the microemulsion. The aqueous reverse micelles were used as templates and different amount of Zn2+ colloid was compelled to hydrolyze on its surface. Scanning electron microscopy indicates that the products grown in the solution with colloid volume concentration of 12.3 and 0.5 v.% are hollow nanospheres and hexagonal microtubes, respectively. It is believed that this difference should attribute to the initial shape of hydrolysate and the core/shell state of water/surfactant during hydrothermal treatment.

Keywords

ZnO Hollow nanosphere Hexagonal microtube Hydrothermal method Reverse microemulsion 

Notes

Acknowledgment

Authors gratefully acknowledge financial support from the Science and Technology Project of Liaoning Province in China (No. 200822208).

References

  1. 1.
    Tong Y, Liu Y, Dong L, Zhao D, Zhang J, Lu Y, Shen D, Fan X (2006) J Phys Chem B 110:20263–20267CrossRefPubMedGoogle Scholar
  2. 2.
    Umar A, Lee S, Im YH, Hahn YB (2005) Nanotechnology 16:2462–2468CrossRefGoogle Scholar
  3. 3.
    Cao H, Zhao YG, Ho ST, Seelig EW, Wang QH, Chang PH (1999) Phys Rev Lett 82:2278–2281CrossRefADSGoogle Scholar
  4. 4.
    Nobis T, Kaidashev EM, Rahm A, Lorenz M, Grundmann M (2004) Phys Rev Lett 93:103903CrossRefPubMedADSGoogle Scholar
  5. 5.
    Zhang Y, Shi E-W, Chen Z-Z, Xiao B (2008) Mater Lett 62:1435–1437CrossRefGoogle Scholar
  6. 6.
    Zhao W, Song X, Chen G, Sun S (2009) Cryst Res Technol 44:373–378CrossRefGoogle Scholar
  7. 7.
    Kim JH, Andeen D, Lange FF (2006) Adv Mater 18:2453–2457CrossRefGoogle Scholar
  8. 8.
    Sun Y, Jason Riley D, Ashfold MNR (2006) J Phys Chem B 110:15186–15192CrossRefPubMedGoogle Scholar
  9. 9.
    Wang J, Qi Y, Zhi Z, Guo J, Li M, Zhang Y (2007) Smart Mater Struct 16:2673–2679CrossRefADSGoogle Scholar
  10. 10.
    Zhang H, Yang D, Ji Y, Ma X, Xu J, Que D (2004) J Phys Chem B 108:3955–3958CrossRefGoogle Scholar
  11. 11.
    Sounart TL, Liu J, Voigt JA, Hsu JWP, Spoerke ED, Tian Z, Jiang YB (2006) Adv Funct Mater 16:335–344CrossRefGoogle Scholar
  12. 12.
    Li M-K, Wang D-Z, Ding S, Ding Y-W, Liu J, Liu Z-B (2007) Appl Surf Sci 253:4161–4165CrossRefADSGoogle Scholar
  13. 13.
    Wang Z, Qian X-F, Yin J, Zhu Z-K (2004) Langmuir 20:3441–3448CrossRefPubMedGoogle Scholar
  14. 14.
    Miao L, Tanemura S, Hayashi Y, Tanemura M (2005) Int J Mod Phys B 19:2804–2810CrossRefADSGoogle Scholar
  15. 15.
    Jiang H, Hu J, Gu F, Li C (2009) J Alloys Compd 478:550–553CrossRefGoogle Scholar
  16. 16.
    Liu B, Zeng HC (2004) Langmuir 20:4196–4204CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Materials Physics and Chemistry, School of ScienceNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.The Key Laboratory for Anisotropy and Texture of Materials, Ministry of EducationNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations