Efficient charge collection with sol–gel derived colloidal ZnO thin film in photovoltaic devices

  • A. K. K. Kyaw
  • X. W. Sun
  • C. Y. Jiang
Original Paper


Polymer bulk heterojunction photovoltaic cell was fabricated by inserting a sol–gel derived ZnO thin film as an electron collecting layer between the fluorine-doped SnO2 (FTO) and polymer-fullerene blend active layer. We demonstrated that the performance of device depends on sol concentration and the sol–gel process. Ammonia treatment on the ZnO film improved the efficiency of the device due to the effective removal of acetate group on the film. The short circuit current density was further increased by fine-tuning the thickness of ZnO film. The photovoltaic cell with this structure (FTO/ZnO film/polymer-fullerene blend/Au) produced a power conversion efficiency of 2.01% under simulated AM1.5G illumination of 100 mW/cm2.


ZnO Sol–gel Organic photovoltaic 



Financial support by Institute of Microelectronics [A*STAR (Agency for Science, Technology and Research)] is gratefully acknowledged. Authors also would like to thank Sun Lidong for XPS scan.


  1. 1.
    Kingshiru C (1975) Phys Status Solidi B 71:547–556. doi: 10.1002/pssb.2220710216 CrossRefGoogle Scholar
  2. 2.
    Jiang CY, Sun XW, Wang JX, Lo GQ, Kwong DL (2007) Appl Phys Lett 90:263501. doi: 10.1063/1.2751588 CrossRefADSGoogle Scholar
  3. 3.
    Konenkamp R, Dloczik L, Ernst K, Olecsh C (2002) Phys E 14:219–223. doi: 10.1016/S1386-9477(02)00387-9 CrossRefGoogle Scholar
  4. 4.
    Vayssieres L (2003) Adv Mater 15:464–466. doi: 10.1002/adma.200390108 CrossRefGoogle Scholar
  5. 5.
    Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Angew Chem Int Ed 42:3031–3034. doi: 10.1002/anie.200351461 CrossRefGoogle Scholar
  6. 6.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353–389. doi: 10.1002/adma.200390087 CrossRefGoogle Scholar
  7. 7.
    Vayssieres L, Keis K, Hagfeldt A, Lindquist SE (2001) Chem Mater 13:4395–4398. doi: 10.1021/cm011160s CrossRefGoogle Scholar
  8. 8.
    Kong XY, Ding Y, Yang RS, Wang ZL (2004) Science 303:1348–1351. doi: 10.1126/science.1092356 CrossRefPubMedADSGoogle Scholar
  9. 9.
    Kakiuchi K, Hosono E, Kimura T, Imai H, Fujihara S (2006) J Sol-Gel Sci Technol 39:63–72. doi: 10.1007/s10971-006-6321-6 CrossRefGoogle Scholar
  10. 10.
    Olson DC, Piris J, Collins RT, Shaheen SE, Ginley DS (2006) Thin Solid Film 496:26–29. doi: 10.1016/j.tsf.2005.08.179 CrossRefADSGoogle Scholar
  11. 11.
    Takanezawa K, Hirota K, Wei QS, Tajima K, Hashimoto K (2007) J Phys Chem C 111:7218–7223. doi: 10.1021/jp071418n CrossRefGoogle Scholar
  12. 12.
    White MS, Olson DC, Shaheen SE, Kopidakis N, Ginley DS (2006) Appl Phys Lett 89:143517. doi: 10.1063/1.2359579 CrossRefADSGoogle Scholar
  13. 13.
    Ghandhi SK, Field RJ, Shealy JR (1980) Appl Phys Lett 37:449. doi: 10.1063/1.91960 CrossRefADSGoogle Scholar
  14. 14.
    Nunes P, Costa D, Fortunato E, Martins R (2002) Vacuum 64:293–297CrossRefGoogle Scholar
  15. 15.
    Look DC, Reynolds DC, Litton CW, Jones RL, Eason DB, Gantwell G (2002) Appl Phys Lett 81:1830. doi: 10.1063/1.1504875 CrossRefADSGoogle Scholar
  16. 16.
    Ogawz MF, Naysume Y, Hirayama T, Sakata H (1990) J Mater Sci Lett 9:1354–1356. doi: 10.1007/BF00726544 CrossRefGoogle Scholar
  17. 17.
    Natsume Y, Sakata H (2003) Mater Chem Phys 78:170–176. doi: 10.1016/S0254-0584(02)00314-0 CrossRefGoogle Scholar
  18. 18.
    Dutta M, Mridha S, Basak D (2008) Appl Surf Sci 254:2743–2747. doi: 10.1016/j.apsusc.2007.10.009 CrossRefADSGoogle Scholar
  19. 19.
    O’Brien S, Koh LHK, Crean GM (2008) Thin Solid Films 516:1391–1395. doi: 10.1016/j.tsf.2007.03.160 CrossRefADSGoogle Scholar
  20. 20.
    Znaidi L, Soler Illia GJAA, Benyahia S, Sanchez C, Kanaev AV (2003) Thin Solid Films 428:257–262. doi: 10.1016/S0040-6090(02)01219-1 CrossRefADSGoogle Scholar
  21. 21.
    Ohyama M, Kozuka H, Yoko T (1997) Thin Solid Films 306:78–85. doi: 10.1016/S0040-6090(97)00231-9 CrossRefADSGoogle Scholar
  22. 22.
    Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nat Mater 4:455–459. doi: 10.1038/nmat1387 CrossRefPubMedADSGoogle Scholar
  23. 23.
    Kruger J, Plass R, Cevey L, Piccirelli M, Graetzel M (2001) Appl Phys Lett 79:2085. doi: 10.1063/1.1406148 CrossRefADSGoogle Scholar
  24. 24.
    Ravirajan P, Peiro AM, Nazeeruddin MK, Graetzel M (2006) J Phys Chem B 110:7635–7639. doi: 10.1021/jp0571372 CrossRefPubMedGoogle Scholar
  25. 25.
    X Liu, Y Luo, H Li, Y Fan, Z Yu, Y Lin, L Chen, Q Meng (2007) Chem Comm 2847–2849. doi: 10.1039/b700472a
  26. 26.
    Beamson G, Briggs D (1992) The Scienta ESCA300 Database. Wiley, EnglandGoogle Scholar
  27. 27.
    Waldauf C, Scharber MC, Schilinsky P, Hauch JA, Brabec CJ (2006) J Appl Phys 99:104503. doi: 10.1063/1.2198930 CrossRefADSGoogle Scholar
  28. 28.
    Steim R, Choulis SA, Schilinsky P, Brabec CJ (2008) Appl Phys Lett 92:093303. doi: 10.1063/1.2885724 CrossRefADSGoogle Scholar
  29. 29.
    Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL (2008) Appl Phys Lett 93:221107. doi: 10.1063/1.3039076 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Institute of Microelectronics, A*STAR (Agency for Science Technology and Research)SingaporeSingapore

Personalised recommendations