Journal of Sol-Gel Science and Technology

, Volume 52, Issue 2, pp 179–187 | Cite as

Influence of combustion reagent and microwave drying method on the characteristics of nano-sized Nd3+:YAG powders synthesized by the gel combustion method

  • Xing-Xin Ge
  • Yan-Hui Sun
  • Cong Liu
  • Wu-Kai Qi
Original paper


Nanosized Nd3+ doped Y3Al5O12 (Nd3+:YAG) powders have been synthesized by the gel combustion method using different combustion reagent such as citric acid, ethylene diamine tetraacetic acid (EDTA), glycine, glycol and the combination of citric acid and EDTA with different ratio. The pure YAG phase was obtained at relatively low temperature around 950 °C for citric acid or EDTA and 1,050 °C for glycine or glycol as combustion reagent, respectively by the gel combustion method. It was found that citric acid and EDTA are the better combustion reagents and yield rather homogeneous and well dispersed club-shape Nd3+:YAG samples, and the particle size synthesized by EDTA is larger than that by citric acid. Moreover, the particle size of Nd:YAG was enlarged when the ratio of EDTA was increased in the combination reagent, and the better dispersion of YAG was obtained when the ratio of citric acid to EDTA was 1:1 compared to that of other ratios and pure one as combustion reagent. On the other hand, the results showed that the microwave assisted in drying process of gel to xerogel produced more smaller Nd3+:YAG particles in size, and more homogeneous dispersion of the Nd3+:YAG particles than that of the traditional dry method.


Nd3+:YAG Gel combustion Microwave Optical material 



The authors would like to thank a lot for professor Xiang-Ming Xu (Analytical and Testing Center of South China Normal University) in determination of TEM of Nd3+:YAG powders.


  1. 1.
    Yokoyama T (1988) Bull Ceram Soc Jpn 23:461Google Scholar
  2. 2.
    Zayhowski JJ (2000) J Alloy Compd 303–304:393CrossRefGoogle Scholar
  3. 3.
    Xu GG, Zhang XD, He W, Liu H (2006) Powder Tech 163:202CrossRefGoogle Scholar
  4. 4.
    Lu J, Prabhu M, Song J, Li C (2000) Appl Phys B 71:469CrossRefADSGoogle Scholar
  5. 5.
    Lu J, Ueda K, Yagi H, Yanagitani T (2001) Laser Phys 11:1053Google Scholar
  6. 6.
    Ikesue A, Furusato I, Kamata K (1995) J Am Ceram Soc 78:225CrossRefGoogle Scholar
  7. 7.
    Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) J Am Ceram Soc 78:1033CrossRefADSGoogle Scholar
  8. 8.
    Lu J, Prabhu M, Xu J, Ueda K (2000) Appl Phys Lett 77:3707CrossRefADSGoogle Scholar
  9. 9.
    Lu J, Song J, Prabhu M, Xu J (2000) Jpn J Appl Phys Lett 39:L1048CrossRefADSGoogle Scholar
  10. 10.
    Lu J, Prabhu M, Xu J, Ueda K (2001) Jpn J Appl Phys Lett 40:L552CrossRefADSGoogle Scholar
  11. 11.
    Lu JR, Ueda K, Yagi H, Yanagitani K (2002) J Alloys Comp 341:220CrossRefGoogle Scholar
  12. 12.
    Wang H, Gao L, Niihara K (2000) Mater Sci Eng A 288:1CrossRefGoogle Scholar
  13. 13.
    Simone A, Esnouf C, Fantozzi G, Montanaro L (2006) J Eur Ceram Soc 26:941CrossRefGoogle Scholar
  14. 14.
    Zhang X, Liu H, He W, Wang J (2004) J Alloys Comp 372:300CrossRefGoogle Scholar
  15. 15.
    Hsu WT, Wu WH, Lu CH (2003) Mater Sci Eng B 104:40CrossRefGoogle Scholar
  16. 16.
    Ruan SK, Zhou JG, Zhong AM, Duan JF (1998) J Alloys Comp 275–277:72CrossRefGoogle Scholar
  17. 17.
    Potdevin A, Chadeyron G, Boyer D, Mahiou R (2006) J Sol–Gel Sci Tech 39:275CrossRefGoogle Scholar
  18. 18.
    Manalert R, Rahaman MN (1996) J Mater Sci 31:3453Google Scholar
  19. 19.
    Wang HM, Simmonds MC, Huang YZ (2003) Chem Mater 15:3474CrossRefGoogle Scholar
  20. 20.
    Inoue M, Otsu H, Kominami H, Inui T (1991) J Am Ceram Soc 74:1452CrossRefGoogle Scholar
  21. 21.
    Hakuta Y, Haganuma T, Sue K, Adschiri T (2003) Mater Res Bull 38:1257CrossRefGoogle Scholar
  22. 22.
    Sim SM, Keller KA (2000) J Mater Sci 35:713CrossRefGoogle Scholar
  23. 23.
    Vrolijk JWGA, Willems JWMM, Metselaar R (1990) J Eur Ceram Soc 6:47CrossRefGoogle Scholar
  24. 24.
    Sordelet DJ, Akinc M, Panchula ML, Han Y, Han MH (1994) J Eur Ceram Soc 14:123CrossRefGoogle Scholar
  25. 25.
    Kang YC, Lenggoro IW, Park SB, Okuyama K (2000) Mater Res Bull 35:789CrossRefGoogle Scholar
  26. 26.
    Kang YC, Lenggoro IW, Park SB (1999) J Phys Chem Solids 60:379CrossRefADSGoogle Scholar
  27. 27.
    Nyman M, Caruso J, Hampden-Smith MJ, Kodas TT (1997) J Am Ceram Soc 80:1231CrossRefGoogle Scholar
  28. 28.
    Pillar KT, Kamat RV, Vaigya VN, Sood DD (1996) Mater Chem Phys 44:255CrossRefGoogle Scholar
  29. 29.
    Shi S, Wang J (2001) J Alloys Comp 327:82CrossRefGoogle Scholar
  30. 30.
    In JH, Lee HC, Yoon MJ (2007) J Supercrit Fluids 40:389CrossRefGoogle Scholar
  31. 31.
    Cabanas A, Li J, Blood P, Chudoba T (2007) J Supercrit Fluids 40:284CrossRefGoogle Scholar
  32. 32.
    Zhang J, Ning J, Liu X, Pan Y, Huang L (2003) Mater Res Bull 38:1249CrossRefGoogle Scholar
  33. 33.
    Zhou YH, Lin J, Wang SB, Zhang HJ (2002) Opt Mater 20:13CrossRefADSGoogle Scholar
  34. 34.
    Zhou YH, Lin J, Yu M, Han SM, Wang SB, Zhang HJ (2003) Mater Res Bull 38:1289CrossRefGoogle Scholar
  35. 35.
    Qiu FG, Pu XP, Li J, Liu XJ, Pan YB, Guo JK (2007) Ceram Inter 33:1047CrossRefGoogle Scholar
  36. 36.
    Sanchez C, Livage J, Henry M, Babonneau F (1988) J Non-Cryst Solids 100:65CrossRefADSGoogle Scholar
  37. 37.
    Sanchez C, Livage J (1990) New J Chem 14:513Google Scholar
  38. 38.
    Wang Y, Yuan P, Xu HY, Wang JQ (2006) J Rare Earths 24:183MATHCrossRefGoogle Scholar
  39. 39.
    Vaidhyanathan B, Binner JGP (2006) J Mater Sci 41:5954CrossRefADSGoogle Scholar
  40. 40.
    Pereira PFS, Caiut JMA, Ribeiro SJL, Messaddeq Y, Ciuffi KJ, Rocha LA, Molina EF, Nassar EJ (2007) J Lumin 126:378CrossRefGoogle Scholar
  41. 41.
    Katelnikovas A, Barkauskas J, Ivanauskas F, Beganskiene A (2007) J Sol–Gel Sci Tech 41:193CrossRefGoogle Scholar
  42. 42.
    Zhang HS, Hui H, Su CH (2007) J Wuhan Univ Tech—Mater Sci Ed 22:333MATHCrossRefGoogle Scholar
  43. 43.
    Su J, Zhang QL (2005) Funct Mater 36:717Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Chemistry and EnvironmentSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations