Advertisement

Journal of Sol-Gel Science and Technology

, Volume 52, Issue 1, pp 109–112 | Cite as

Ferromagnetism study of Co0.2Mg x Zn0.8−x O films prepared by the sol–gel method

  • Yow-Jon Lin
  • Chia-Lung Tsai
  • Chia-Jyi Liu
  • Lance Horng
  • Yu-Tai Shih
  • Mu-Shan Wang
  • Chuan-Sheng Jhang
  • Chao-Shien Huang
Original Paper

Abstract

Co0.2Mg x Zn0.8−x O films prepared with different molar ratio of magnesium acetate to zinc acetate were deposited on substrates by the sol–gel technique. X-ray diffraction, photoluminescence (PL) and ferromagnetism measurements were used to characterize the Co0.2Mg x Zn0.8−x O diluted magnetic semiconductors. The acceptor-like defects were determined in the PL band and the intensity of the acceptor-related PL increased with increasing Mg concentration. Therefore, an increase in the number of the acceptor-like defects (zinc vacancies especially) in the Co0.2Mg x Zn0.8−x O film may lead to the enhancement of the magnetic properties. It is worth noting that changes in Mg concentration and the number of the acceptor-like defects are important issues for producing strong ferromagnetism Co0.2Mg x Zn0.8−x O films prepared by the sol–gel method.

Keywords

ZnO Ferromagnetism Defect Photoluminescence Characterization 

Notes

Acknowledgments

The authors acknowledge the support of the National Science Council of Taiwan (Contract No. 97-2628-M-018-001-MY3) in the form of grants.

References

  1. 1.
    Ramachandran S, Narayan J, Prater JT (2006) Appl Phys Lett 88:242503. doi: 10.1063/1.2213930 CrossRefADSGoogle Scholar
  2. 2.
    Yan W, Sun Z, Liu Q, Li Z, Pan Z, Wang J, Wei S, Wang D, Zhou Y, Zhang X (2007) Appl Phys Lett 91:062113. doi: 10.1063/1.2769391 CrossRefADSGoogle Scholar
  3. 3.
    Hsu HA, Huang JCA, Huang YH, Liao YF, Lin MZ, Lee CH, Lee JF (2006) Appl Phys Lett 88:242507. doi: 10.1063/1.2212277 CrossRefADSGoogle Scholar
  4. 4.
    Liu XC, Shi EW, Chen ZZ, Zhang T, Zhang Y, Chen BY, Huang W, Liu X, Song LX, Zhou KJ, Cui MQ (2008) Appl Phys Lett 92:042502. doi: 10.1063/1.2838292 CrossRefADSGoogle Scholar
  5. 5.
    Herng TS, Lau SP, Yang SF, Ji XH, Chen JS, Yasui N, Inaba H (2006) J Appl Phys 99:086101. doi: 10.1063/1.2190711 CrossRefADSGoogle Scholar
  6. 6.
    Cui JB, Gibson UJ (2005) Appl Phys Lett 87:133108. doi: 10.1063/1.2058222 CrossRefADSGoogle Scholar
  7. 7.
    Gu ZB, Yuan CS, Lu MH, Wang J, Wu D, Zhang ST, Zhu SN, Zhu YY, Chen YF (2005) J Appl Phys 98:053908. doi: 10.1063/1.2039279 CrossRefADSGoogle Scholar
  8. 8.
    Mofor AC, El-Shaer A, Bakin A, Waag A, Ahlers H, Siegner U, Sievers S, Albrecht M, Schoch W, Izyumskaya N, Avrutin V (2005) Appl Phys Lett 87:062501. doi: 10.1063/1.2007864 CrossRefADSGoogle Scholar
  9. 9.
    Ramachandran S, Tiwari A, Narayan J (2004) J Electron Mater 33:1298. doi: 10.1007/s11664-004-0156-0 CrossRefADSGoogle Scholar
  10. 10.
    Potzger K, Zhou S, Reuther H, Kuepper K, Talut G, Helm M, Fassbender J, Denlinger JD (2007) Appl Phys Lett 91:062107. doi: 10.1063/1.2768196 CrossRefADSGoogle Scholar
  11. 11.
    Buyanova IA, Chen WN, Ivill MP, Pate R, Norton DP, Pearton SJ, Dong JW, Osinsky A, Hertog B, Dabiran AN, Chow PP (2006) J Vac Sci Technol B 24:259. doi: 10.1116/1.2163884 CrossRefGoogle Scholar
  12. 12.
    Wu JJ, Liu SC, Yan MH (2004) Appl Phys Lett 85:1027. doi: 10.1063/1.1779958 CrossRefADSGoogle Scholar
  13. 13.
    Lin YH, Ying M, Li M, Wang X, Nan CW (2007) Appl Phys Lett 90:222110. doi: 10.1063/1.2745247 CrossRefADSGoogle Scholar
  14. 14.
    Wang Y, Sun L, Li Y, Zhang YF, Han DD, Liu LF, Kang JF, Jin YF, Zhang X, Han RQ (2008) Jpn J Appl Phys 47:3261. doi: 10.1143/JJAP.47.3261 CrossRefADSGoogle Scholar
  15. 15.
    Manivannan A, Dutta P, Glaspell G, Seehra (2006) J Appl Phys 99:08M110CrossRefGoogle Scholar
  16. 16.
    Martin-González MS, Fernández JF, Rubio-Marcos F, Lorite I, Costa-Krämer JL, Quesada A, Bañares MA, Fierro JL (2008) J Appl Phys 103:083905. doi: 10.1063/1.2904862 CrossRefADSGoogle Scholar
  17. 17.
    Antony J, Pendyala S, Sharma A, Chen XB, Morrison J, Bergman L, Qiang Y (2005) J Appl Phys 97:10D307CrossRefGoogle Scholar
  18. 18.
    Jung EY, Lee SG, Sohn SH, Lee DK, Kim HK (2005) Appl Phys Lett 86:153503. doi: 10.1063/1.1899238 CrossRefADSGoogle Scholar
  19. 19.
    Matsumura K, Ohnishi A, Sasaki M, Kakuta T, Kurihara M, Sakamoto M (2007) Jpn J Appl Phys 46:1432. doi: 10.1143/JJAP.46.1432 CrossRefADSGoogle Scholar
  20. 20.
    Liu Q, Gan CL, Yuan CL, Han GC (2008) Appl Phys Lett 92:032501. doi: 10.1063/1.2835702 CrossRefADSGoogle Scholar
  21. 21.
    Lin YJ, Wu PH, Tsai CL, Liu CJ, Lee CT, Chang HC, Lin ZR, Jeng KY (2008) J Phys D Appl Phys 41:125103. doi: 10.1088/0022-3727/41/12/125103 CrossRefADSGoogle Scholar
  22. 22.
    Qiu MX, Ye ZZ, He HP, Zhang YZ, Gu XQ, Zhu LP, Zhao BH (2007) Appl Phys Lett 90:182116. doi: 10.1063/1.2735555 CrossRefADSGoogle Scholar
  23. 23.
    Nie LC, Yang JY, Piao Y, Li H, Sun Y, Xue QM, Xiong CM, Dou RF, Tu QY (2008) Appl Phys Lett 93:173104. doi: 10.1063/1.3010376 CrossRefADSGoogle Scholar
  24. 24.
    Lin YJ, Tsai CL, Chen WC, Liu CJ, Horng L, Shih YT, Lin ZR, Wang JF (2008) J Cryst Growth 310:3763. doi: 10.1016/j.jcrysgro.2008.06.043 CrossRefADSGoogle Scholar
  25. 25.
    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P (2008) Phys Rev B 77:205411. doi: 10.1103/PhysRevB.77.205411 CrossRefADSGoogle Scholar
  26. 26.
    Karmakar D, Mandal SK, Kadam RM, Paulose PL, Rajarajan AK, Nath TK, Das AK, Dasgupta I, Das GP (2007) Phys Rev B 75:144404. doi: 10.1103/PhysRevB.75.144404 CrossRefADSGoogle Scholar
  27. 27.
    Iuşan D, Sanyal B, Eriksson O (2006) Phys Rev B 74:235208. doi: 10.1103/PhysRevB.74.235208 CrossRefADSGoogle Scholar
  28. 28.
    Lin YJ, Tsai CL, Lu YM, Liu CJ (2006) J Appl Phys 99:093501. doi: 10.1063/1.2193649 CrossRefADSGoogle Scholar
  29. 29.
    Kang HS, Kang JS, Kim JW, Lee SY (2004) J Appl Phys 95:1246. doi: 10.1063/1.1633343 CrossRefADSGoogle Scholar
  30. 30.
    Lin B, Fu Z, Jia Y (2001) Appl Phys Lett 79:943. doi: 10.1063/1.1394173 CrossRefADSGoogle Scholar
  31. 31.
    Patterson CH (2006) Phys Rev B 74:144432. doi: 10.1103/PhysRevB.74.144432 CrossRefADSGoogle Scholar
  32. 32.
    Fan XM, Lian JS, Guo ZX, Lu HJ (2005) Appl Surf Sci 239:176. doi: 10.1016/j.apsusc.2004.05.144 CrossRefADSGoogle Scholar
  33. 33.
    Monteiro T, Neves AJ, Carmo MC, Soares MJ, Peres M, Wang J, Alves E, Rita E, Wahl U (2005) J Appl Phys 98:013502. doi: 10.1063/1.1946200 CrossRefADSGoogle Scholar
  34. 34.
    Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ, Morkoç H (2005) J Appl Phys 98:041301. doi: 10.1063/1.1992666 CrossRefADSGoogle Scholar
  35. 35.
    Lin YJ, Tsai CL (2006) J Appl Phys 100:113721. doi: 10.1063/1.2399894 CrossRefADSGoogle Scholar
  36. 36.
    Zhang SB, Wei SH, Zunger A (2001) Phys Rev B 63:075205. doi: 10.1103/PhysRevB.63.075205 CrossRefADSGoogle Scholar
  37. 37.
    König J, Lin HH, MacDonald AH (2001) Phys Rev Lett 86:5637. doi: 10.1103/PhysRevLett.86.5637 CrossRefADSGoogle Scholar
  38. 38.
    Litvinov VI, Dugaev VK (2001) Phys Rev Lett 86:5593. doi: 10.1103/PhysRevLett.86.5593 PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yow-Jon Lin
    • 1
  • Chia-Lung Tsai
    • 2
  • Chia-Jyi Liu
    • 2
  • Lance Horng
    • 2
  • Yu-Tai Shih
    • 2
  • Mu-Shan Wang
    • 2
  • Chuan-Sheng Jhang
    • 1
  • Chao-Shien Huang
    • 2
  1. 1.Institute of PhotonicsNational Changhua University of EducationChanghua 500Taiwan
  2. 2.Department of PhysicsNational Changhua University of EducationChanghua 500Taiwan

Personalised recommendations