Advertisement

Journal of Sol-Gel Science and Technology

, Volume 50, Issue 3, pp 275–280 | Cite as

Study of thermal conductivity and effect of humidity on HMDZ modified TEOS based aerogel dried at ambient pressure

  • Jyoti L. Gurav
  • A. Venkateswara Rao
  • Digambar Y. Nadargi
Original Paper

Abstract

The experimental results on the study of thermal conductivity and effect of humidity on HMDZ modified TEOS based aerogels dried at ambient pressure, are reported. Silica sol was prepared by keeping the MeOH/TEOS molar ratio, Acidic water (Oxalic acid) and basic water (NH4OH) concentrations constant at 16.5, 0.001 and 1 M, respectively throughout the experiments and the HMDZ/TEOS molar ratio (h) was varied from 0.34 to 2.1. Finally, the surface modified wet gels were dried at an ambient pressure. The thermal conductivity of the aerogel samples was measured. Further, the humidity study was carried out in 80% humid surrounding at 30 °C temperature over 80 days. The best quality aerogels in terms of low bulk density, thermal conductivity and durability (no moisture absorption) with an only 2% of weight gain were obtained for TEOS: MeOH: Acidic H2O: Basic H2O: HMDZ molar ratio at 1:16.5:0.81:0.50:0.681, respectively. The thermal stability and hydrophobicity of the aerogel have been confirmed with Thermo gravimetric and Differential Thermal (TG–DT) analyses and Fourier Transform Infrared Spectroscopy (FTIR), respectively. Microstructural studies were carried out by Scanning Electron microscopy (SEM).

Keywords

Silica aerogels Thermal conductivity Humidity Ambient pressure drying Scanning Electron Microscopy (SEM) 

Notes

Acknowledgments

The authors are grateful to the Department of Science and Technology (DST) New Delhi, Government of India, for the financial support for this work through a major research project on “Aerogels” (N0. SR/S2/CMP-67/2006). Also, grateful thank to Dr. S.D. Bhagat for his valuable help for microstructure (SEM) study of this paper and UGC ASSIST and DRS-phase IInd.

References

  1. 1.
    Carlson PJ, Johansson KE, Norrolo JK, Pingot O, Tavernier S, Van den Bogert F, Van Luncker L (1979) Nucl Instrum Methods 160:407. doi: 10.1016/0029-554X(79)90193-9 CrossRefADSGoogle Scholar
  2. 2.
    Buzykaev AR, Danilyuk AF, Ganzbur SF, Gorodtskaya TA, Kolachev GM, Kravchenko EA, Mikerov VI, Minakov GD, Onuchin AP, Shamov AG, Tayursky VA (1998) J Non-Cryst Solids :225Google Scholar
  3. 3.
    Tilllotson TM, Hrubesh LW, Simpon RL, Lee RS, Swansiger RW (1998) J Non-Cryst solids 225:358CrossRefADSGoogle Scholar
  4. 4.
    Jang KY, Kim K, Upadhye RS (1990) J Vac Sci Technol A 8(3):1732. doi: 10.1116/1.576839 CrossRefADSGoogle Scholar
  5. 5.
    Caps R, Fricke JF (1986) Sol Energy 26:361. doi: 10.1016/0038-092X(86)90153-2 CrossRefGoogle Scholar
  6. 6.
    Harnath D, Wagh PB, Pajonk GM, Rao AV (1997) Mater Res Bull 32(8):1079. doi: 10.1016/S0025-5408(97)00086-X CrossRefGoogle Scholar
  7. 7.
    Pajonk GM (1991) Appl Catal 72:217. doi: 10.1016/0166-9834(91)85054-Y CrossRefGoogle Scholar
  8. 8.
    Pajonk GM, Teichner SJ (1985) In: Fricke J (ed) Proceeding of the first International Symposium on Aerogels, Wurzburg, Germany, 23–25, September 1985, p. 193Google Scholar
  9. 9.
    Smith DM, Maskara A, Bose U (1998) J Non-Cryst Solids 225:254. doi: 10.1016/S0022-3093(98)00125-2 CrossRefADSGoogle Scholar
  10. 10.
    Gross J, Fricke J (1992) J Non-Cryst Solids 145:217. doi: 10.1016/S0022-3093(05)80459-4 CrossRefADSGoogle Scholar
  11. 11.
    Carslaw HS, Jaeger JC (1959) Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford, p 344Google Scholar
  12. 12.
    Hegade ND, Venkateswara Rao A (2007) Applied Surface SciGoogle Scholar
  13. 13.
    Rao AV, Kalesh RR, Panjonk GM (2003) J Mater Sci 38:4407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jyoti L. Gurav
    • 1
  • A. Venkateswara Rao
    • 1
  • Digambar Y. Nadargi
    • 1
  1. 1.Air Glass LaboratoryShivaji UniversityKolhapurIndia

Personalised recommendations