Journal of Sol-Gel Science and Technology

, Volume 51, Issue 1, pp 102–111 | Cite as

Study on chemical-solution-deposited lanthanum zirconium oxide film based on the Taguchi method

  • Hsueh Shih Chen
  • Ramachandran Vasant Kumar
  • Bartlomiej Andrzej Glowacki
original paper


A statistical route, Taguchi Design, applied to the analysis of experimental factors for coating lanthanum zirconium oxide films on metal substrates by inkjet printer is presented. The synthesis of lanthanum zirconium oxide precursor is derived from a chemical solution containing lanthanum acetate hydrate, zirconium propoxide, propionic acid, glacial acetic acid, and methanol anhydrous. Experimental factors analyzed by Taguchi Design show that the ratio of lanthanum acetate to propionic acid and the concentration of precursor used for inkjet printing are the dominant factors for the quality of films. With the deduced optimum conditions, lanthanum zirconium oxide films reveal good surface morphology and high out-of-plane alignment that is consistent with the Taguchi prediction.


Buffer layer Inkjet printing Lanthanum zirconium oxide Superconductor Taguchi 


  1. 1.
    Chartier A, Meis C (2002) Phys Rev B 65:134116CrossRefADSGoogle Scholar
  2. 2.
    Poulsen FW, Puil N (1994) Solid State Ionics 777:53Google Scholar
  3. 3.
    Lian J, Wang LM, Haire RG, Helean KB, Esing RC (2004) Nucl Instrum Methods Phys Res B 218:236CrossRefADSGoogle Scholar
  4. 4.
    Harvey EJ, Whittle KR, Lumpkin GR, Smith RI, Redferna SAT (2005) J Solid State Chem 178:800CrossRefADSGoogle Scholar
  5. 5.
    Chiodelli G, Scagliotti M (1994) Solid State Ionics 73:265CrossRefGoogle Scholar
  6. 6.
    Seo JW, Fompeyrine J, Guiller A, Norga G, Marchiori C, Siegwart H, Locquet JP (2003) Appl Phys Lett 83:5211CrossRefADSGoogle Scholar
  7. 7.
    Marple BR, Voyer J, Thibodeau M, Nagy DR, Vassen R (2006) J Eng Gas Turbines Power Trans ASME 128:144CrossRefGoogle Scholar
  8. 8.
    Lian J, Zu XT, Kutty KVG, Chen J, Wang LM, Ewing RC (2002) Phys Rev B 66:54108CrossRefADSGoogle Scholar
  9. 9.
    Sathyamurthy S, Paranthaman M, Zhai HY, Christen HM, Martin PM, Goyal A (2002) J Mat Res 17:1543CrossRefADSGoogle Scholar
  10. 10.
    Knoth K, Schlobach B, Huhne R, Schultz L, Holzapfel B (2005) Physica C 426–431:979CrossRefGoogle Scholar
  11. 11.
    Engel S, Knoth K, Huhne R, Schultz L, Holzapfel B (2005) Supercond Sci Technol 18:13851390CrossRefGoogle Scholar
  12. 12.
    Wee SH, Goyal A, Hsu H, Li J, Heatherly L, Kim K, Aytug T (2007) J Am Ceram Soc 90:3529CrossRefGoogle Scholar
  13. 13.
    Cordero-Cabrera MC, Mouganie T, Glowacki BA, Backer M, Falter M, Holzapfel B, Engell J (2007) J Mater Sci 42:7129CrossRefADSGoogle Scholar
  14. 14.
    Mouganie T, Glowacki BA (2006) J Mater Sci 41:8257CrossRefADSGoogle Scholar
  15. 15.
    Bhuiyan MS, Paranthaman M, Sathyamurthy S, Hunt RD, List FA, Duckworth RC (2007) IEEE Trans Appl Supercond 17:3557CrossRefGoogle Scholar
  16. 16.
    Singh R, Khamba JS (2007) Mat Sci Eng A 460–461:365CrossRefGoogle Scholar
  17. 17.
    Phadke MS (1989) Quality engineering using robust design. Prentice Hall, NJGoogle Scholar
  18. 18.
    Chen HS, Kumar RV, Glowacki BA (2009) J Sol–Gel Sci Tech (submitted)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hsueh Shih Chen
    • 1
  • Ramachandran Vasant Kumar
    • 1
  • Bartlomiej Andrzej Glowacki
    • 1
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations