Skip to main content
Log in

Lithium intercalation into borate xerogel during sol–gel process: synthesis, characterization and their property of lowering the thermal degradation temperature of polystyrene

  • Fast Track Communication
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We prepared lithiated borate (LB) during sol–gel process and found that it could greatly lower the degradation temperature (Td) of Polystyrene (PS). The lithium insertion process was carried out in the same time as tributyl borate hydrolysis in the water. The crystal structure of LB is identified via X-ray diffraction (XRD). The XRD results show that the particle is boric acid. Raman spectroscopy reveals that intercalation Li+ ion can be coordinated with O. The structure of LB xerogel in this experiment is mainly determined by the ratio of ethanol to water, amount of lithium and acid or alkali circumstances during sol–gel process, which in turn determines the lithium reactivity to the degradation of PS. The investigation of polystyrene degradation temperature with LB xerogel indirectly proved the coordination state of Li+ in LB xerogel, which was also confirmed by Raman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Tuller HL, Button DP, Uhlmann DR (1980) J Non-Cryst Solids 40:93. doi:10.1016/0022-3093(80)90096-4

    Article  ADS  CAS  Google Scholar 

  2. Horopanitis EE, Perentzis G, Pavlidou E, Papadimitriou L (2003) Ionics 9:88. doi:10.1007/BF02376543

    Article  CAS  Google Scholar 

  3. Horopanitis EE, Perentzis G, Beck A, Guczi L, Peto G, Papadimitriou L (2008) J Non-Cryst Solids 354:374–379. doi:10.1016/j.jnoncrysol.2007.07.046

    Article  ADS  CAS  Google Scholar 

  4. Ishii M, Kuwano Y, Asai T, Asaba S, Kawamura M, Senguttuvan N, Hayashi T, Kobayashi M, Nikl M, Hosoya S, Sakai K, Adachi T, Oku T, Shimizu HM (2005) Nucl Instr Methods A 537:282–285. doi:10.1016/j.nima.2004.08.027

    Article  ADS  CAS  Google Scholar 

  5. van Eijk CWE, Bessiére A, Dorenbos P (2004) Nucl Instr Methods A 529:260–267. doi:10.1016/j.nima.2004.04.163

    Article  ADS  Google Scholar 

  6. El Batal FH, El Kheshen AA, Azooz MA, Abo-Naf SM (2008) Opt Mater 30:881–891. doi:10.1016/j.optmat.2007.03.010

    Article  ADS  CAS  Google Scholar 

  7. Ardiçoğlu B, Özbayoğlu G, Özdemir Z, Yilmaz A (2006) J Alloy Comp 418:77–79. doi:10.1016/j.jallcom.2005.08.099

    Article  Google Scholar 

  8. McMillen CD, Giesber HG, Kolis JW (2008) J Cryst Growth 310:299–305. doi:10.1016/j.jcrysgro.2007.10.068

    Article  ADS  CAS  Google Scholar 

  9. Koh S, Uda S, Huang X (2007) J Cryst Growth 306:406–412. doi:10.1016/j.jcrysgro.2007.05.008

    Article  ADS  CAS  Google Scholar 

  10. Ishii M, Kuwano Y, Asai T, Senguttuvan N, Hayashi T, Kobayashi M, Oku T, Sakai K, Adachi T, Shimizu HM, Suzuki J (2003) J Cryst Growth 257:169–176. doi:10.1016/S0022-0248(03)01500-8

    Article  ADS  CAS  Google Scholar 

  11. Krüner G, Frischat GH (1990) J Non-Cryst Solids 121:167–170

    Article  ADS  Google Scholar 

  12. Muralidharan P, Venkateswarlu M, Satyanarayana N (2004) Solid State Ion 166:27–38. doi:10.1016/j.ssi.2003.10.011

    Article  CAS  Google Scholar 

  13. Mai L, Hu B, Chen W, Qi Y, Lao C, Yang R, Dai Y, Wang Z (2007) Adv Mater 19:3712–3716. doi:10.1002/adma.200700883

    Article  CAS  Google Scholar 

  14. Luo J-Y, Wang Y-G, Ming H-M, Xia Y-Y (2007) Chem Mater 19:4791–4795. doi:10.1021/cm0714180

    Article  CAS  Google Scholar 

  15. Aldon L, Kubiak P, Womes M, Jumas JC, Olivier-Fourcade J, Tirado JL, Corredor JI, Vicente CP (2004) Chem Mater 16:5721–5725. doi:10.1021/cm0488837

    Article  CAS  Google Scholar 

  16. Dubarry M, Gaubicher J, Guyomard D, Duruphy O, Steunou N, Livage J, Dupré N, Grey CP (2005) Chem Mater 17:2276–2283. doi:10.1021/cm047845k

    Article  CAS  Google Scholar 

  17. Wallace SA, Stephan AC, Cooperb R, Im H, Dai S (2007) Nucl Instr Methods A 579:184–187. doi:10.1016/j.nima.2007.04.036

    Article  ADS  CAS  Google Scholar 

  18. Ukei H, Hirose T, Horikawa S, Takai Y, Taka M, Azuma N, Ueno A (2000) Catal Today 62:67–75. doi:10.1016/S0920-5861(00)00409-0

    Article  CAS  Google Scholar 

  19. Sato S, Murakata T, Baba S, Saito Y, Watanabe S (1990) J Appl Polym Sci 40:2065–2071. doi:10.1002/app.1990.070401120

    Article  CAS  Google Scholar 

  20. Zhang Z, Hirose T, Nishio S, Morioka Y, Azuma N, Ueno A, Ohkita H, Okada M (1995) Ind Eng Chem 34:4514–4519. doi:10.1021/ie00039a044

    Article  CAS  Google Scholar 

  21. Woo OS, Nancy A, Broadbelt LJ (2000) Catal Today 55:161–171. doi:10.1016/S0920-5861(99)00235-7

    Article  CAS  Google Scholar 

  22. Kim J-S, Lee W-Y, Lee S-B, Kim S-B, Choi M-J (2003) Catal Today 87:59–68. doi:10.1016/j.cattod.2003.10.004

    Article  CAS  Google Scholar 

  23. Muralidharan P, Venkateswarlu M, Satyanarayana N (2005) J Non-Cryst Solids 351:583–594. doi:10.1016/j.jnoncrysol.2005.01.032

    Article  ADS  CAS  Google Scholar 

  24. Chumbhale VR, Kim J-S, Lee S-B, Choi M-J (2004) J Mole Catal A Chem 222:133–141. doi:10.1016/j.molcata.2004.07.002

    Article  CAS  Google Scholar 

  25. Powder diffraction file, JCPDS-ICDD, USA, No. 81–1149, No. 07–1946

  26. Yang L, Ge X, Wang M, Song L, He X (2008) Mater Lett 62:429–431. doi:10.1016/j.matlet.2007.05.057

    Article  CAS  Google Scholar 

  27. Powder diffraction file, JCPDS-ICDD, USA, No. 18–0717

  28. Liu Z, Gao B, Li S, Hu M, Xia S (2004) Spectrochimica Acta Part A 60:3125–3128

    Article  Google Scholar 

  29. Erdemir A, Bindal C, Zuiker C, Savrun E (1996) Surf Coat Tech 86–87:507–510. doi:10.1016/S0257-8972(96)02984-2

    Article  Google Scholar 

  30. Rulmont A, Almou M (1989) Spectrochimica Acta 45A:603

    CAS  Google Scholar 

  31. Im H, Saengkerdsub S, Stephan AC, Pawel MD, Holcomb DE, Dai S (2004) Adv Mater 16:1757–1761. doi:10.1002/adma.200400337

    Article  CAS  Google Scholar 

  32. Gejke C, Zanghellini E, Fransson L, Edström K, Börjesson L (2001) J Power Sources 97–98:226–228. doi:10.1016/S0378-7753(01)00662-0

    Article  Google Scholar 

  33. Ji Q, Iwaura R, Shimizu T (2007) Chem Mater 19:1329–1334. doi:10.1021/cm0625124

    Article  CAS  Google Scholar 

  34. Shen Q, Yang H, Gao J, Yang J (2007) Mater Lett 61:4160–4162. doi:10.1016/j.matlet.2007.01.045

    Article  CAS  Google Scholar 

  35. Serrano DP, Aguado J, Escola JM (2000) Appl Catal B Environ 25:181–189. doi:10.1016/S0926-3373(99)00130-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxin Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Qin, C., Shen, J. et al. Lithium intercalation into borate xerogel during sol–gel process: synthesis, characterization and their property of lowering the thermal degradation temperature of polystyrene. J Sol-Gel Sci Technol 50, 8–14 (2009). https://doi.org/10.1007/s10971-009-1916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1916-3

Keywords

Navigation