Lithium intercalation into borate xerogel during sol–gel process: synthesis, characterization and their property of lowering the thermal degradation temperature of polystyrene

  • Chen Li
  • Chen Qin
  • Jianfeng Shen
  • Yizhe Hu
  • Binbin Zhang
  • Weishi Huang
  • Mingxin Ye
Fast Track Communication


We prepared lithiated borate (LB) during sol–gel process and found that it could greatly lower the degradation temperature (Td) of Polystyrene (PS). The lithium insertion process was carried out in the same time as tributyl borate hydrolysis in the water. The crystal structure of LB is identified via X-ray diffraction (XRD). The XRD results show that the particle is boric acid. Raman spectroscopy reveals that intercalation Li+ ion can be coordinated with O. The structure of LB xerogel in this experiment is mainly determined by the ratio of ethanol to water, amount of lithium and acid or alkali circumstances during sol–gel process, which in turn determines the lithium reactivity to the degradation of PS. The investigation of polystyrene degradation temperature with LB xerogel indirectly proved the coordination state of Li+ in LB xerogel, which was also confirmed by Raman.


Borates Raman Lithium coordination Sol–gel processes Polystyrene degradation 


  1. 1.
    Tuller HL, Button DP, Uhlmann DR (1980) J Non-Cryst Solids 40:93. doi: 10.1016/0022-3093(80)90096-4 CrossRefADSGoogle Scholar
  2. 2.
    Horopanitis EE, Perentzis G, Pavlidou E, Papadimitriou L (2003) Ionics 9:88. doi: 10.1007/BF02376543 CrossRefGoogle Scholar
  3. 3.
    Horopanitis EE, Perentzis G, Beck A, Guczi L, Peto G, Papadimitriou L (2008) J Non-Cryst Solids 354:374–379. doi: 10.1016/j.jnoncrysol.2007.07.046 CrossRefADSGoogle Scholar
  4. 4.
    Ishii M, Kuwano Y, Asai T, Asaba S, Kawamura M, Senguttuvan N, Hayashi T, Kobayashi M, Nikl M, Hosoya S, Sakai K, Adachi T, Oku T, Shimizu HM (2005) Nucl Instr Methods A 537:282–285. doi: 10.1016/j.nima.2004.08.027 CrossRefADSGoogle Scholar
  5. 5.
    van Eijk CWE, Bessiére A, Dorenbos P (2004) Nucl Instr Methods A 529:260–267. doi: 10.1016/j.nima.2004.04.163 CrossRefADSGoogle Scholar
  6. 6.
    El Batal FH, El Kheshen AA, Azooz MA, Abo-Naf SM (2008) Opt Mater 30:881–891. doi: 10.1016/j.optmat.2007.03.010 CrossRefADSGoogle Scholar
  7. 7.
    Ardiçoğlu B, Özbayoğlu G, Özdemir Z, Yilmaz A (2006) J Alloy Comp 418:77–79. doi: 10.1016/j.jallcom.2005.08.099 CrossRefGoogle Scholar
  8. 8.
    McMillen CD, Giesber HG, Kolis JW (2008) J Cryst Growth 310:299–305. doi: 10.1016/j.jcrysgro.2007.10.068 CrossRefADSGoogle Scholar
  9. 9.
    Koh S, Uda S, Huang X (2007) J Cryst Growth 306:406–412. doi: 10.1016/j.jcrysgro.2007.05.008 CrossRefADSGoogle Scholar
  10. 10.
    Ishii M, Kuwano Y, Asai T, Senguttuvan N, Hayashi T, Kobayashi M, Oku T, Sakai K, Adachi T, Shimizu HM, Suzuki J (2003) J Cryst Growth 257:169–176. doi: 10.1016/S0022-0248(03)01500-8 CrossRefADSGoogle Scholar
  11. 11.
    Krüner G, Frischat GH (1990) J Non-Cryst Solids 121:167–170CrossRefADSGoogle Scholar
  12. 12.
    Muralidharan P, Venkateswarlu M, Satyanarayana N (2004) Solid State Ion 166:27–38. doi: 10.1016/j.ssi.2003.10.011 CrossRefGoogle Scholar
  13. 13.
    Mai L, Hu B, Chen W, Qi Y, Lao C, Yang R, Dai Y, Wang Z (2007) Adv Mater 19:3712–3716. doi: 10.1002/adma.200700883 CrossRefGoogle Scholar
  14. 14.
    Luo J-Y, Wang Y-G, Ming H-M, Xia Y-Y (2007) Chem Mater 19:4791–4795. doi: 10.1021/cm0714180 CrossRefGoogle Scholar
  15. 15.
    Aldon L, Kubiak P, Womes M, Jumas JC, Olivier-Fourcade J, Tirado JL, Corredor JI, Vicente CP (2004) Chem Mater 16:5721–5725. doi: 10.1021/cm0488837 CrossRefGoogle Scholar
  16. 16.
    Dubarry M, Gaubicher J, Guyomard D, Duruphy O, Steunou N, Livage J, Dupré N, Grey CP (2005) Chem Mater 17:2276–2283. doi: 10.1021/cm047845k CrossRefGoogle Scholar
  17. 17.
    Wallace SA, Stephan AC, Cooperb R, Im H, Dai S (2007) Nucl Instr Methods A 579:184–187. doi: 10.1016/j.nima.2007.04.036 CrossRefADSGoogle Scholar
  18. 18.
    Ukei H, Hirose T, Horikawa S, Takai Y, Taka M, Azuma N, Ueno A (2000) Catal Today 62:67–75. doi: 10.1016/S0920-5861(00)00409-0 CrossRefGoogle Scholar
  19. 19.
    Sato S, Murakata T, Baba S, Saito Y, Watanabe S (1990) J Appl Polym Sci 40:2065–2071. doi: 10.1002/app.1990.070401120 CrossRefGoogle Scholar
  20. 20.
    Zhang Z, Hirose T, Nishio S, Morioka Y, Azuma N, Ueno A, Ohkita H, Okada M (1995) Ind Eng Chem 34:4514–4519. doi: 10.1021/ie00039a044 CrossRefGoogle Scholar
  21. 21.
    Woo OS, Nancy A, Broadbelt LJ (2000) Catal Today 55:161–171. doi: 10.1016/S0920-5861(99)00235-7 CrossRefGoogle Scholar
  22. 22.
    Kim J-S, Lee W-Y, Lee S-B, Kim S-B, Choi M-J (2003) Catal Today 87:59–68. doi: 10.1016/j.cattod.2003.10.004 CrossRefGoogle Scholar
  23. 23.
    Muralidharan P, Venkateswarlu M, Satyanarayana N (2005) J Non-Cryst Solids 351:583–594. doi: 10.1016/j.jnoncrysol.2005.01.032 CrossRefADSGoogle Scholar
  24. 24.
    Chumbhale VR, Kim J-S, Lee S-B, Choi M-J (2004) J Mole Catal A Chem 222:133–141. doi: 10.1016/j.molcata.2004.07.002 CrossRefGoogle Scholar
  25. 25.
    Powder diffraction file, JCPDS-ICDD, USA, No. 81–1149, No. 07–1946Google Scholar
  26. 26.
    Yang L, Ge X, Wang M, Song L, He X (2008) Mater Lett 62:429–431. doi: 10.1016/j.matlet.2007.05.057 CrossRefGoogle Scholar
  27. 27.
    Powder diffraction file, JCPDS-ICDD, USA, No. 18–0717Google Scholar
  28. 28.
    Liu Z, Gao B, Li S, Hu M, Xia S (2004) Spectrochimica Acta Part A 60:3125–3128CrossRefGoogle Scholar
  29. 29.
    Erdemir A, Bindal C, Zuiker C, Savrun E (1996) Surf Coat Tech 86–87:507–510. doi: 10.1016/S0257-8972(96)02984-2 CrossRefGoogle Scholar
  30. 30.
    Rulmont A, Almou M (1989) Spectrochimica Acta 45A:603Google Scholar
  31. 31.
    Im H, Saengkerdsub S, Stephan AC, Pawel MD, Holcomb DE, Dai S (2004) Adv Mater 16:1757–1761. doi: 10.1002/adma.200400337 CrossRefGoogle Scholar
  32. 32.
    Gejke C, Zanghellini E, Fransson L, Edström K, Börjesson L (2001) J Power Sources 97–98:226–228. doi: 10.1016/S0378-7753(01)00662-0 CrossRefGoogle Scholar
  33. 33.
    Ji Q, Iwaura R, Shimizu T (2007) Chem Mater 19:1329–1334. doi: 10.1021/cm0625124 CrossRefGoogle Scholar
  34. 34.
    Shen Q, Yang H, Gao J, Yang J (2007) Mater Lett 61:4160–4162. doi: 10.1016/j.matlet.2007.01.045 CrossRefGoogle Scholar
  35. 35.
    Serrano DP, Aguado J, Escola JM (2000) Appl Catal B Environ 25:181–189. doi: 10.1016/S0926-3373(99)00130-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chen Li
    • 1
  • Chen Qin
    • 1
  • Jianfeng Shen
    • 1
  • Yizhe Hu
    • 1
  • Binbin Zhang
    • 1
  • Weishi Huang
    • 1
  • Mingxin Ye
    • 1
    • 2
  1. 1.Department of Materials ScienceFudan UniversityShanghaiChina
  2. 2.The Key Laboratory of Molecular Engineering of Polymer, Ministry of EducationShanghaiChina

Personalised recommendations