Advertisement

Journal of Sol-Gel Science and Technology

, Volume 50, Issue 3, pp 387–396 | Cite as

Preparation, characterization and activity evaluation of p–n junction photocatalyst p-NiO/n-ZnO

  • Chen Shifu
  • Zhao Wei
  • Liu Wei
  • Zhang Sujuan
Original Paper

Abstract

In this paper, p–n junction photocatalyst NiO/ZnO was prepared by the sol–gel method using Ni (NO3)2 and zinc acetate as the raw materials. The structural and optical properties of the p–n junction photocatalyst NiO/ZnO were characterized by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, UV–Vis diffuse reflection spectrum (DRS) and the fluorescence emission spectra. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic reduction of Cr2O7 2− and photocatalytic oxidation of methyl orange (MO). The results showed that the photocatalytic activity of the p–n junction photocatalyst NiO/ZnO is much higher than that of ZnO on the photocatalytic reduction of Cr2O7 2−. However, the photocatalytic activity of the photocatalyst is much lower than that of ZnO on the photocatalytic oxidation of methyl orange. Namely, the p–n junction photocatalyst NiO/ZnO has higher photocatalytic reduction activity, but lower photocatalytic oxidation activity. The heat treatment condition also influences the photocatalytic activity strongly, and the best preparation condition is about 400 °C for 2 h. Effect of the heat treatment condition on the photocatalytic activity of the photocatalyst was also investigated. The mechanisms of influence on the photocatalytic activity were discussed by the p–n junction principle.

Keywords

NiO/ZnO p–n junction Photocatalyst Heat treatment Characterization 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 20673042), the Natural Science Foundation of Anhui Province (Contract No. 070415211), the Key Project of Science and Technology Research of Ministry of Education of China (208062) and the Natural Science Foundation of Anhui Provincial Education Committee (KJ2007A015).

References

  1. 1.
    Qiu X, Li L, Zheng J, Liu J, Sun X, Li G (2008) J Phys Chem C 112:12242. doi: 10.1021/jp803129e CrossRefGoogle Scholar
  2. 2.
    Pauporte T, Rathousky J (2007) J Phys Chem C 111:7639. doi: 10.1021/jp071465f CrossRefGoogle Scholar
  3. 3.
    Dindar B, Icli S (2001) J Photochem Photobiol Chem 140:263. doi: 10.1016/S1010-6030(01)00414-2 CrossRefGoogle Scholar
  4. 4.
    Mrowetz M, Selli E (2006) J Photochem Photobiol Chem 180:15. doi: 10.1016/j.jphotochem.2005.09.009 CrossRefGoogle Scholar
  5. 5.
    Li D, Haneda H (2003) Chemosphere 51:129. doi: 10.1016/S0045-6535(02)00787-7 PubMedCrossRefGoogle Scholar
  6. 6.
    Sobana N, Swaminathan M (2007) Separ Purif Tech 56:101. doi: 10.1016/j.seppur.2007.01.032 CrossRefGoogle Scholar
  7. 7.
    Yu JG, Yu XX (2008) Environ Sci Technol 42:4902. doi: 10.1021/es800036n PubMedCrossRefGoogle Scholar
  8. 8.
    Chen CC, Fan HJ, Jan JL (2008) J Phys Chem C 112:11962. doi: 10.1021/jp801027r CrossRefGoogle Scholar
  9. 9.
    Su WY, Zhang YF, Li ZH, Wu L, Wang XX, Li JQ, Fu XZ (2008) Langmuir 24:3422. doi: 10.1021/la701645y PubMedCrossRefGoogle Scholar
  10. 10.
    Wang X, Lian W, Fu X, Basset JM, Lefebvre F (2006) J Catal 238:13. doi: 10.1016/j.jcat.2005.11.027 CrossRefGoogle Scholar
  11. 11.
    Marcì G, Augugliaro V, López-Muñoz MJ (2001) J Phys Chem B 105:1026. doi: 10.1021/jp003172r CrossRefGoogle Scholar
  12. 12.
    Marcì G, Augugliaro V, López-Muñoz MJ (2001) J Phys Chem B 105:1033. doi: 10.1021/jp003173j CrossRefGoogle Scholar
  13. 13.
    Qiu XQ, Li LP, Fu XZ, Li GS (2008) J Nanosci Nanotechnol 8:1301. doi: 10.1166/jnn.2008.283 PubMedCrossRefGoogle Scholar
  14. 14.
    Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2008) J Phys Chem C 112:10773. doi: 10.1021/jp8027275 CrossRefGoogle Scholar
  15. 15.
    Tang H, Chang JC, Shan Y, Lee ST (2008) J Phys Chem B 112:4016. doi: 10.1021/jp0775707 PubMedCrossRefGoogle Scholar
  16. 16.
    Wen Z, Wang G, Lu W, Wang Q, Zhang Q, Li J (2007) Cryst Growth Des 7:1722. doi: 10.1021/cg060801z CrossRefGoogle Scholar
  17. 17.
    Zhang ZH, Yuan Y, Fang YJ, Liang LH, Ding HC, Jin LT (2007) Talanta 73:523. doi: 10.1016/j.talanta.2007.04.011 PubMedCrossRefGoogle Scholar
  18. 18.
    Hong RY, Zhang SZ, Di GQ, Li HZ, Zheng Y, Ding J, Wei DG (2008) Mater Res Bull 43:2457. doi: 10.1016/j.materresbull.2007.07.035 CrossRefGoogle Scholar
  19. 19.
    Cham K, Seok JD, Se GL, Sung JL, Ho YK (2007) Appl Catal Gen 330:127. doi: 10.1016/j.apcata.2007.07.016 CrossRefGoogle Scholar
  20. 20.
    Doggett B, Chakrabarti S, O’Haire R, Meaney A, McGlynn E, Henry MO, Mosnier JP (2007) Superlattices Microstruct 42:74. doi: 10.1016/j.spmi.2007.04.028 CrossRefADSGoogle Scholar
  21. 21.
    Shinya M, Tadaaki I, Kimio A, Zhang QW, Fumio S, Shozo TK (2007) Chem Phys Lett 436:373. doi: 10.1016/j.cplett.2007.01.067 CrossRefGoogle Scholar
  22. 22.
    Wang X, Hu P, Fangli Y, Yu L (2007) J Phys Chem C 111:6706. doi: 10.1021/jp070382w CrossRefGoogle Scholar
  23. 23.
    Lin J, Lin J, Zhu YF (2007) Inorg Chem 46:8372. doi: 10.1021/ic701036k PubMedCrossRefGoogle Scholar
  24. 24.
    Hsiao KC, Liao SC, Chen YJ (2007) Mater Sci Eng A 447:71. doi: 10.1016/j.msea.2006.10.116 CrossRefGoogle Scholar
  25. 25.
    Wang RH, Xin JH, Yang Y, Liu HF, Xu LM, Hu JH (2004) Appl Surf Sci 227:312CrossRefADSGoogle Scholar
  26. 26.
    Kanade KG, Kale BB, Baeg JO, Lee SM, Lee CW, Moon SJ, Chang H (2007) Mater Chem Phys 102:98CrossRefGoogle Scholar
  27. 27.
    Sakthivel S, Geissen SU, Bahnemann DW, Murugesan V, Vogelpohl A (2002) J Photochem Photobiol Chem 148:283. doi: 10.1016/S1010-6030(02)00055-2 CrossRefGoogle Scholar
  28. 28.
    Sreethawong T, Suzuki Y, Yoshikawa S (2005) Int J Hydrogen Energy 30:1053. doi: 10.1016/j.ijhydene.2004.09.007 CrossRefGoogle Scholar
  29. 29.
    Lin HY, Chen YF, Chen YW (2007) Int J Hydrogen Energy 32:86. doi: 10.1016/j.ijhydene.2006.04.007 CrossRefMathSciNetGoogle Scholar
  30. 30.
    Deng XZ, Sun J, Yu SS, Xi JY, Zhu WT, Qiu XP (2008) Int J Hydrogen Energy 33:1008Google Scholar
  31. 31.
    Huang B, Li F, Chen G, Zhao BY, Hu KA (2004) Mater Res Bull 39:1359. doi: 10.1016/j.materresbull.2003.11.009 CrossRefGoogle Scholar
  32. 32.
    Zhao W, Ma WH, Chen CC, Zhao JC, Shuai ZG (2004) J Am Chem Soc 126:4782PubMedCrossRefGoogle Scholar
  33. 33.
    Sarapatka TJ (1993) Chem Phys Lett 212:1CrossRefGoogle Scholar
  34. 34.
    Uhlenbrock S, Scharfschwerdt C, Neumann M, Illing G, Freund HJ (1992) J Phys Condens Matter 4:7973. doi: 10.1088/0953-8984/4/40/009 CrossRefADSGoogle Scholar
  35. 35.
    Biju V (2007) Mater Res Bull 42:791. doi: 10.1016/j.materresbull.2006.10.009 CrossRefGoogle Scholar
  36. 36.
    Anandana S, Vinu A, Sheeja Lovely KLP, Gokulakrishnan N, Srinivasu P, Mori T, Murugesan V, Sivamurugan V, Ariga K (2007) J Mol Catal Chem 266:149. doi: 10.1016/j.molcata.2006.11.008 CrossRefGoogle Scholar
  37. 37.
    Dzhurinsk BFII, Gati D, Sergushin NP, Nefedov VI, Salyn YV (1975) Russ J Inorg Chem 20:2307Google Scholar
  38. 38.
    Stypula B, Stoch J (1994) Corros Sci 36:2159. doi: 10.1016/0010-938X(94)90014-0 CrossRefGoogle Scholar
  39. 39.
    Chen SF, Zhang SJ, Liu W, Zhao W (2008) J Hazard Mater 115:320Google Scholar
  40. 40.
    Mabcia F, Fierro G, Ingo GM (1989) Corrosion 45:814Google Scholar
  41. 41.
    Oku M, Tokuda H, Hirokawa K (1991) J Electron Spectrosc Relat Phenom 53:201. doi: 10.1016/0368-2048(91)85039-V CrossRefGoogle Scholar
  42. 42.
    Chen SF, Chen L (2006) Mater Chem Phys 98:116. doi: 10.1016/j.matchemphys.2005.08.073 CrossRefGoogle Scholar
  43. 43.
    Klug HP, Alexander LE (1997) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New YorkGoogle Scholar
  44. 44.
    Gao B, Ma Y, Cao Y, Yang W, Yao J (2006) J Phys Chem B 110:14391. doi: 10.1021/jp0624606 PubMedCrossRefGoogle Scholar
  45. 45.
    Cai TJ, Yue M, Wang XW, Deng Q (2007) Chin J Catal 28:10. doi: 10.1016/S1872-2067(07)60007-2 CrossRefGoogle Scholar
  46. 46.
    Tang JW, Zou ZG, Ye JH (2003) J Phys Chem B 107:14265. doi: 10.1021/jp0359891 CrossRefGoogle Scholar
  47. 47.
    Seungmo K, Kyoungchul S, Kandasamy P, Chongmu L (2004) Phys Status Solidi(b) 12:2830Google Scholar
  48. 48.
    Long MC, Cai WM, Cai J, Zhou BX, Chai XY, Wu YH (2006) J Phys Chem B 110:20211. doi: 10.1021/jp063441z PubMedCrossRefGoogle Scholar
  49. 49.
    Liu SX, Liu H (2005) Fundamental and application of photocatalysis and electro-photocatalysis. Chem Ind Press, BeijingGoogle Scholar
  50. 50.
    Chen SF, Cao GY (2005) Chem Phys Lett 413:404. doi: 10.1016/j.cplett.2005.08.038 CrossRefADSGoogle Scholar
  51. 51.
    Yu JC, Yu J, Zhao J (2002) Appl Catal B Environ 36:31CrossRefGoogle Scholar
  52. 52.
    Dvoranova D, Brezova V, Mazur M, Malati MA (2002) Appl Catal B: Environ 37:91CrossRefGoogle Scholar
  53. 53.
    Chen SF, Chen L (2005) Powder Technol 160:198CrossRefGoogle Scholar
  54. 54.
    Lin XP, Xing JC, Wang WD, Shan ZC, Xu FF, Huang FQ (2007) J Phys Chem C 111:18288. doi: 10.1021/jp073955d CrossRefGoogle Scholar
  55. 55.
    Bandara J, Weerasinghe H (2005) Sol Energy Mater Sol Cells 85:385. doi: 10.1016/j.solmat.2004.05.010 CrossRefGoogle Scholar
  56. 56.
    Ohtani B, Ogawa Y, Nishimoto SI (1997) J Phys Chem B 101:3746. doi: 10.1021/jp962702+ CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryHuaibei Coal Normal CollegeHuaibeiPeople’s Republic of China

Personalised recommendations