Journal of Sol-Gel Science and Technology

, Volume 49, Issue 2, pp 137–144 | Cite as

CAM sol–gel synthesized LiMPO4 (M=Co, Ni) cathodes for rechargeable lithium batteries

  • Gangulibabu
  • D. Bhuvaneswari
  • N. Kalaiselvi
  • N. Jayaprakash
  • P. Periasamy
Fast Track Communication


The emerging category cathode candidates such as LiCoPO4 and LiNiPO4 were synthesized at 800 °C using Citric acid assisted modified sol–gel (CAM sol–gel) method and examined for possible lithium intercalation behavior. Compound formation temperature is confirmed from thermogravimetry and differential thermal analysis (TG/DTA). Powder X-ray diffraction (PXRD) pattern evidenced the absence of undesirable peaks and confirmed the formation of phase pure LiMPO4 (M=Co, Ni) compounds with an orthorhombic structure and finer crystallite size. Presence of nanosized particles as observed from TEM image of LiCoPO4 and the presence of preferred local cation environment as understood from FT–IR studies are the added advantages of CAM sol–gel synthesis. Further, Cyclic voltametry (CV) and Impedance spectroscopy (EIS) studies performed on the synthesized LiCoPO4 and LiNiPO4 cathodes revealed excellent reversibility and structural stability of CAM sol–gel synthesized cathodes, especially upon storage as well as during cycling.


CAM sol–gel method LiCoPO4 LiNiPO4 XRD Cyclic reversibility 



The authors are thankful to the Council of Scientific and Industrial Research (CSIR), India for financial support to carry out this work.


  1. 1.
    Ni JF, Zhou HH, Chen JT, Zhang XX (2005) Mater Lett 59:2361–2365. doi: 10.1016/j.matlet.2005.02.080 CrossRefGoogle Scholar
  2. 2.
    Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtuka H (1996) Solid State Ion 92:1–10. doi: 10.1016/S0167-2738(96)00472-9 CrossRefGoogle Scholar
  3. 3.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194. doi: 10.1149/1.1837571 CrossRefGoogle Scholar
  4. 4.
    Wang Y, Wang J, Yang J, Nuli Y (2006) Adv Funct Mater 16:2135–2141. doi: 10.1002/adfm.200600442 CrossRefGoogle Scholar
  5. 5.
    Yamada A, Koizumi H, Sonoyama NN, Kanno R (2005) Electrochem Solid-State Lett 8(8):A409–A413. doi: 10.1149/1.1945373 CrossRefGoogle Scholar
  6. 6.
    Revet N et al. (1999) Improved iron based cathode material. Abstract No.127. Electrochemical Society Fall meeting, Honululu, HawaiiGoogle Scholar
  7. 7.
    Huang H, Yin SC, Nazar LF (2001) Electrochem Solid-State Lett 4(10):A170–A172. doi: 10.1149/1.1396695 CrossRefGoogle Scholar
  8. 8.
    Prosini PP, Zane D, Pasquali M (2001) Electrochim Acta 46:3517–3523CrossRefGoogle Scholar
  9. 9.
    Chung SY, Blocking JT, Chiang YM (2002) Nat Mater 1:123–128. doi: 10.1038/nmat732 PubMedCrossRefADSGoogle Scholar
  10. 10.
    Myung S-T, Komabo S, Hirosaki N, Yashiro H, Kumagai N (2004) Electrochem Acta 49:4213–4222CrossRefGoogle Scholar
  11. 11.
    Jayaprakash N, Kalaiselvi N, Sun YK (2008) Electrochem Commun 13:455–460CrossRefGoogle Scholar
  12. 12.
    Jayaprakash N, Kalaiselvi N, Periasamy P (2008) Nanotechnology 19:025603–025608. doi: 10.1088/0957-4484/19/02/025603 CrossRefADSGoogle Scholar
  13. 13.
    Chen J, Vacchio MJ, Wang S, Chernova N, Zavalij PY, Wittingham MS (2008) Solid State Ion 178:1676–1693. doi: 10.1016/j.ssi.2007.10.015 CrossRefGoogle Scholar
  14. 14.
    Jayaprakash N, Kalaiselvi N, Periasamy P (2008) Int J Electrochem Sci 3:478–488Google Scholar
  15. 15.
    Nakamoto K (1978) Infrared and Raman spectra of inorganic and coordination compounds. Wiley and sons, New YorkGoogle Scholar
  16. 16.
    Vivekanandan S, Venkateshwaralu M, Satyanarayana N (2008) Mater Chem Phys 109:241–248Google Scholar
  17. 17.
    Julien C, Camacho-Lopez MA, Mohan T, Chitra S, Kalyani P, Gopukumar S (2000) Solid State Ion 135:241–248. doi: 10.1016/S0167-2738(00)00370-2 CrossRefGoogle Scholar
  18. 18.
    Rulmont A, Cahay R, Liegevis M, Tarte P (1991) Eur J Solid Inorg Chem 28:207–219Google Scholar
  19. 19.
    Ait salah A, Jozwiak P, Zaghib K, Garbarczyk J, Gendron F, Mauger A, Julien CM (2006) Spectrochem Acta A 65:1007–1013CrossRefGoogle Scholar
  20. 20.
    Arcon D, Zorko A, Dominko R, Jaglicic Z (2004) J Phys Condens Matter 16:5531–5548. doi: 10.1088/0953-8984/16/30/014 CrossRefADSGoogle Scholar
  21. 21.
    Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) J Power Sources 97–98:430–434. doi: 10.1016/S0378-7753(01)00631-0 CrossRefGoogle Scholar
  22. 22.
    Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid-State Lett 3(4):178–179. doi: 10.1149/1.1390994 CrossRefGoogle Scholar
  23. 23.
    Wolfenstine J, Allen J (2005) J Power Sources 142:389–390. doi: 10.1016/j.jpowsour.2004.11.024 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gangulibabu
    • 1
  • D. Bhuvaneswari
    • 1
  • N. Kalaiselvi
    • 1
  • N. Jayaprakash
    • 1
  • P. Periasamy
    • 1
  1. 1.Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations