Advertisement

Journal of Sol-Gel Science and Technology

, Volume 49, Issue 2, pp 243–246 | Cite as

Preparation of superhydrophobic silica films with honeycomb-like structure by emulsion method

  • Taisheng Yang
  • Hui Tian
  • Yuqing Chen
Original Paper

Abstract

Silica films with honeycomb-like structure were successfully obtained by emulsion method. Emulsion films prepared by the Dip-Withdrawing method were dried at 180 °C for 2 h and sintered at 500 °C, the films turned from superhydrophilic to superhydrophobic after being modified by octyltrimethoxysilane (OTMS) to form a self-assembled monolayer (SAM) with low surface energy. The surface structures and the thickness of the silica emulsion films were observed by scanning electron microscopy (SEM), and the results showed that the emulsion method had a similar effect to the phase separation one on producing the honeycomb-like structure that highly influenced the wettability of solid surface.

Keywords

Superhydrophobic Honeycomb-like structure Scanning electron microscopy Emulsion method Self-assembled monolayer 

Notes

Acknowledgment

This work was supported by the Provincial Natural Science Foundation of Shandong (Grant No. Y2005F28).

References

  1. 1.
    Feng L, Li S, Li Y et al (2002) Adv Mater 14:1857. doi: 10.1002/adma.200290020 CrossRefGoogle Scholar
  2. 2.
    Guo L, Yuan WF, Li JP et al (2008) Appl Surf Sci 254:2158. doi: 10.1016/j.apsusc.2007.08.089 CrossRefADSGoogle Scholar
  3. 3.
    Zhao B, Moore JS, Beebe DJ (2001) Science 291:1023. doi: 10.1126/science.291.5506.1023 PubMedCrossRefADSGoogle Scholar
  4. 4.
    Weigl BH, Yager P (1999) Science 283:346. doi: 10.1126/science.283.5400.346 CrossRefGoogle Scholar
  5. 5.
    Henry CM (2001) Chem Eng News 79:35Google Scholar
  6. 6.
    Guo Z, Zhou F, Hao J et al (2005) Chem Soc 127:15670. doi: 10.1021/ja0547836 CrossRefGoogle Scholar
  7. 7.
    Wu Y, Sugimura H, Lnoue Y et al (2002) Chem Vap Deposition 8:47. doi:10.1002/1521-3862(20020304)8:2<47::AID-CVDE47>3.0.CO;2-#CrossRefGoogle Scholar
  8. 8.
    Hou HF, Chen YQ (2007) J Sol-Gel Sci Technol 43:53. doi: 10.1007/s10971-007-1571-5 CrossRefGoogle Scholar
  9. 9.
    Bico J, Marzolin C, Quere D (1999) Europhys Lett 47:220. doi: 10.1209/epl/i1999-00548-y CrossRefADSGoogle Scholar
  10. 10.
    Feng L, Li S, Li H et al (2002) Chem (Kyoto) 114:1269Google Scholar
  11. 11.
    Cheng GX, Pang XS, Liu C (2004) Applications of synthetic resin latices. Chemical Industry Press, BeijingGoogle Scholar
  12. 12.
    Alexander N, Khramov, Maryanne M. Collinson (2001) Chem Commun 767Google Scholar
  13. 13.
    Imhof A, Pine DJ (1997) Nature 389:948. doi: 10.1038/40105 CrossRefADSGoogle Scholar
  14. 14.
    Xu G, Yang JM (2001) J xian inst techol 24:65MathSciNetGoogle Scholar
  15. 15.
    Cassie A, Baxter S (1944) Trans Faraday Soc 40:546. doi: 10.1039/tf9444000546 CrossRefGoogle Scholar
  16. 16.
    Zheng LJ, Wu XD, Lou Z et al (2004) Chin Sci Bull 49:1779. doi: 10.1360/04wb0047 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringShandong Institute of Light IndustryJinanPeople’s Republic of China

Personalised recommendations