Journal of Sol-Gel Science and Technology

, Volume 49, Issue 2, pp 166–169 | Cite as

The calculation of the optimum pH range for synthesizing BST nanopowders by sol–gel auto-combustion process

  • Shun Hua Xiao
  • Jin Hu
  • Hai Jun Xu
  • Wei Fen Jiang
  • Xin Jian Li
Original Paper


The optimum pH range for synthesizing barium strontium titanate (Ba0.5Sr0.5TiO3, BST) nanopowders by sol–gel auto-combustion method was calculated based on the principles of matter balance and charge balance. The effectiveness of the calculation was proved by the successful synthesis of highly dispersive, spherically shaped and pure BST nanoparticles with setting the pH in the range pre-decided by theoretical evaluation. Ours might have provided an effective path for pre-deciding the solution pH in synthesizing various oxide nanopowders by sol–gel auto-combustion method.


Barium strontium titanate (BST) Sol–gel auto-combustion method pH range 



This work was supported by National Natural Science Foundation of China (No. 10574112). Guangxi Natural Science Fund, China (Grant No. 0832257) and the Research Foundation of Education Bureau of Guangxi Province, China (Grant No. 200708LX333).


  1. 1.
    Beitel G, Wendt H, Fritch E, Weinrich V, Engelhardt M (1999) Microelectron Eng 48:299CrossRefGoogle Scholar
  2. 2.
    Horng RH, Wuu DS, Kung CY, Lin JC, Leu CC, Haung TY, Sze SM (2001) J Non-Cryst Solids 280:48CrossRefADSGoogle Scholar
  3. 3.
    Zhang TJ, Ni H (2002) Sens Actuators A 100:252Google Scholar
  4. 4.
    Chen XF, Zhu WG, Tan OK (2000) Mater Sci Eng B 77:177CrossRefGoogle Scholar
  5. 5.
    Zhu W, Tan OK, Yan Q, Oh JT (2000) Sens Actuators B 65:366CrossRefGoogle Scholar
  6. 6.
    Jain M, Majumder SB, Katiyar RS, Bhalla AS (2003) Mater Lett 57:4232CrossRefGoogle Scholar
  7. 7.
    Xu J, Menesklou WG, Tiffee EI (2004) J Eur Ceram Soc 24:1735CrossRefGoogle Scholar
  8. 8.
    Szymczak L, Ujma Z, Handerek J, Kapusta J (2004) Ceram Int 30:1003CrossRefGoogle Scholar
  9. 9.
    Tian HY, Luo WG, Pu XH, He XY, Qiu PS, Ding AL (2001) Mater Chem Phys 69:166CrossRefGoogle Scholar
  10. 10.
    Jang SI, Jang HM (1998) Thin Solid Film 330:89CrossRefADSGoogle Scholar
  11. 11.
    Khollam YB, Bhoraskar SV, Deshpande SB, Potdar HS, Pavaskar NR, Sainkar SR, Date SK (2003) Mater Lett 57:1871CrossRefGoogle Scholar
  12. 12.
    Ries A, Simoes AZ, Cilense M, Zaghete MA, Varela JA (2003) Mater Charact 50:217CrossRefGoogle Scholar
  13. 13.
    Qi XW, Zhou J, Yue ZX, Gui ZL, Li LT (2003) Ceram Int 29:347CrossRefGoogle Scholar
  14. 14.
    Liu BH, Ding J (2006) Appl Phys Lett 88:042506CrossRefADSGoogle Scholar
  15. 15.
    Choy J-H, Han Y-S, Hwang S-H (1998) J Am Ceram Soc 81:3197CrossRefGoogle Scholar
  16. 16.
    Choy J-H, Han Y-S, Song S-W (2004) Mater Lett 19:257Google Scholar
  17. 17.
    Choy J-H, Han Y-S (1997) Mater Lett 32:209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shun Hua Xiao
    • 1
  • Jin Hu
    • 2
  • Hai Jun Xu
    • 3
  • Wei Fen Jiang
    • 4
  • Xin Jian Li
    • 5
  1. 1.Department of Materials and Chemistry EngineeringGuilin University of TechnologyGuilinChina
  2. 2.Foreign Language DepartmentGuilin University of TechnologyGuilinChina
  3. 3.School of ScienceBeijing University of Chemical TechnologyBeijingChina
  4. 4.Department of Mathematics and Information ScienceNorth China Institute of Water Conservancy and Hydroelectric Power ZhengzhouChina
  5. 5.Department of Physics and Laboratory of Materials PhysicsZhengzhou UniversityZhengzhouChina

Personalised recommendations